Triage method for load rating bridge size two-cell reinforced concrete box culverts for the AASHTO LRFD design load

Author(s):  
Hossein Sharifi ◽  
Abheetha Peiris ◽  
Issam Harik
Author(s):  
Timothy A. Wood ◽  
William D. Lawson ◽  
Priyantha W. Jayawickrama

2016 ◽  
Vol 21 (12) ◽  
pp. 04016095 ◽  
Author(s):  
Timothy A. Wood ◽  
William D. Lawson ◽  
James G. Surles ◽  
Priyantha W. Jayawickrama ◽  
Hoyoung Seo

2015 ◽  
Vol 20 (1) ◽  
pp. 04014057 ◽  
Author(s):  
Timothy A. Wood ◽  
William D. Lawson ◽  
Priyantha W. Jayawickrama ◽  
Charles D. Newhouse

Author(s):  
Elsayed Ismail ◽  
Mohamed S. Issa ◽  
Khaled Elbadry

Abstract Background A series of nonlinear finite element (FE) analyses was performed to evaluate the different design approaches available in the literature for design of reinforced concrete deep beam with large opening. Three finite element models were developed and analyzed using the computer software ATENA. The three FE models of the deep beams were made for details based on three different design approaches: (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978), (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006), and Strut and Tie method (STM) as per ACI 318-14 (ACI318 Committee, Building Code Requirements for Structural Concrete (ACI318-14), 2014). Results from the FE analyses were compared with the three approaches to evaluate the effect of different reinforcement details on the structural behavior of transfer deep beam with large opening. Results The service load deflection is the same for the three models. The stiffnesses of the designs of (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and STM reduce at a load higher than the ultimate design load while the (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) reduces stiffness at a load close to the ultimate design load. The deep beam designed according to (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) model starts cracking at load higher than the beam designed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) method. The deep beam detailed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) and (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) failed due to extensive shear cracks. The specimen detailed according to STM restores its capacity after initial failure. The three models satisfy the deflection limit. Conclusion It is found that the three design approaches give sufficient ultimate load capacity. The amount of reinforcement given by both (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) is the same. The reinforcement used by the STM method is higher than the other two methods. Additional reinforcement is needed to limit the crack widths. (Mansur, M. A., Design of reinforced concrete beams with web openings, (2006)) method gives lesser steel reinforcement requirement and higher failure load compared to the other two methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Thamer Hussein Amer Alhussein ◽  
Jamal Abdul Samad Khudhair

Experimental and numerical investigations of the behavior of directly and indirectly loaded flanged reinforced concrete (RC) deep beams cast with self-compacted concrete (SCC) containing recycled concrete as coarse aggregate (RCA) were conducted in this research. Seventeen RC deep flanged beams were designed to fail in shear. These beams were divided into three groups: twelve indirectly loaded beams without shear reinforcement; three directly loaded beams without stirrups; and two indirectly loaded beams with vertical stirrups. These beams were also classified according to the RCA ratio and shear span-to-effective depth (a/d) ratio, which will be detailed later. The RCA ranged from 0% to 75%, while the a/d ratio was taken as 1.0, 1.35, and 1.7. Experimental results show that the use of RCA reduces the cracking and ultimate capacities, and this finding complies with the conclusions of several research studies in the literature as will be detailed later. It was observed that beams with higher RCA exhibited higher deflection, strain, and crack width. Furthermore, by increasing the a/d ratio, the ultimate load was decreased due to the lower contribution of arch action shear transfer in the beam. A web reinforcement spaced at 100 mm and 50 mm increases the ultimate load by 35% and 48%, respectively. Strut and tie model (STM) presented by the American Concrete Institute (ACI) 318-14 and the American Association of State Highway and Transportation Officials (AASHTO LRFD 2012) was used to predict the ultimate shear capacity of the beams. STM predicted lower beam capacity than the experimental result. The ultimate strength calculated using ACI318-14 and AASHTO LRFD 2012 was on average 38% and 52% lower than the experimental data, respectively, which reflects the conservative nature of this approach. Finally, 3D finite element models were created to investigate the responses of the beams. The FE results showed very good agreement with the experimental data, where FE-predicted shear capacities were on average 9% higher than the experimental results.


Sign in / Sign up

Export Citation Format

Share Document