Analysis of two temperature thermoelastic diffusion plate with variable thermal conductivity and diffusivity

Author(s):  
P. K. Sharma ◽  
Ankit Bajpai ◽  
Rajneesh Kumar
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Sudip Mondal ◽  
Sadek Hossain Mallik ◽  
M. Kanoria

A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter.


Sign in / Sign up

Export Citation Format

Share Document