phase lag
Recently Published Documents


TOTAL DOCUMENTS

1838
(FIVE YEARS 559)

H-INDEX

66
(FIVE YEARS 12)

Author(s):  
Yi-Ching Chen ◽  
Yi-Ying Tsai ◽  
Gwo-Ching Chang ◽  
Ing-Shiou Hwang

Abstract Background Error amplification (EA), virtually magnify task errors in visual feedback, is a potential neurocognitive approach to facilitate motor performance. With regional activities and inter-regional connectivity of electroencephalography (EEG), this study investigated underlying cortical mechanisms associated with improvement of postural balance using EA. Methods Eighteen healthy young participants maintained postural stability on a stabilometer, guided by two visual feedbacks (error amplification (EA) vs. real error (RE)), while stabilometer plate movement and scalp EEG were recorded. Plate dynamics, including root mean square (RMS), sample entropy (SampEn), and mean frequency (MF) were used to characterize behavioral strategies. Regional cortical activity and inter-regional connectivity of EEG sub-bands were characterized to infer neural control with relative power and phase-lag index (PLI), respectively. Results In contrast to RE, EA magnified the errors in the visual feedback to twice its size during stabilometer stance. The results showed that EA led to smaller RMS of postural fluctuations with greater SampEn and MF than RE did. Compared with RE, EA altered cortical organizations with greater regional powers in the mid-frontal cluster (theta, 4–7 Hz), occipital cluster (alpha, 8–12 Hz), and left temporal cluster (beta, 13–35 Hz). In terms of the phase-lag index of EEG between electrode pairs, EA significantly reduced long-range prefrontal-parietal and prefrontal-occipital connectivity of the alpha/beta bands, and the right tempo-parietal connectivity of the theta/alpha bands. Alternatively, EA augmented the fronto-centro-parietal connectivity of the theta/alpha bands, along with the right temporo-frontal and temporo-parietal connectivity of the beta band. Conclusion EA alters postural strategies to improve stance stability on a stabilometer with visual feedback, attributable to enhanced error processing and attentional release for target localization. This study provides supporting neural correlates for the use of virtual reality with EA during balance training.


Author(s):  
Ahmed E. Abouelregal ◽  
Kadry Zakaria ◽  
Magdy A. Sirwah ◽  
Hijaz Ahmad ◽  
Ali F. Rashid

This work aims to assess the response of viscoelastic Kelvin–Voigt microscale beams under initial stress. The microbeam is photostimulated by the light emitted by an intense picosecond pulsed laser. The photothermal elasticity model with dual-phase lags, the plasma wave equation and Euler–Bernoulli beam theory are utilized to construct the system equations governing the thermoelastic vibrations of microbeams. Using the Laplace transform technique, the problem is solved analytically and expressions are provided for the distributions of photothermal fields. Taking aluminum as a numerical example, the effect of the pulsed laser duration coefficient, viscoelasticity constants and initial stress on photothermal vibrations has been studied. In addition, a comparison has been made between different models of photo-thermoelasticity to validate the results of the current model. Photo-microdynamic systems might be monolithically integrated on aluminum microbeams using microsurface processing technology as a result of this research.


Author(s):  
Mingming Mei ◽  
Shuo Cheng ◽  
Liang Li ◽  
Bingjie Yan

Abstract Based on the guaranteed cost theory, this paper proposes a robust controller for the automotive electro-hydraulic coupling system. However, parameter perturbation caused by the model linearization is a critical challenge for the nonlinear electro-hydraulic coupling system. Generally, the electrical brake booster system (E-Booster) can be separated into three parts, a permanent magnet synchronous motor (PMSM), a hydraulic model of the master cylinder, and the transmission mechanism. In this paper, the robust guaranteed cost controller (RGCC) could adjust accurately the pushrod position of the E-Booster and has strong robustness against internal uncertainties, and the linear extended state observer (LESO) was utilized to optimize E-Booster's dynamic performance. Thus, the tracking differentiator (TD) and LESO are used to improve the dynamic precision and reduce the hysteresis effect. The overshoot is suppressed by TD, and the disturbance caused by nonlinear uncertainty is restrained by LESO. Experiment results show that RGCC sacrifices 6% phase lag in the low-frequency domain for a 10% and 40% reduction in first and second-order respectively compared with the proportion integration differentiation (PID). Results demonstrate that RGCC has higher precision and stronger robustness in dynamic behaviour.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
S. H. Elhag ◽  
Fatimah S. Bayones ◽  
A. A. Kilany ◽  
S. M. Abo-Dahab ◽  
Emad A.-B. Abdel-Salam ◽  
...  

The present research paper illustrates how noninteger derivative order analysis affects the reflection of partial thermal expansion waves under the generalized theory of plane harmonic wave reflection from a semivacuum elastic solid material with both gravity and magnetic field in the three-phase lag model (3PHL). The main goal for this study is investigating the fractional order impact and the applications related to the orders, especially in biology, medicine, and bioinformatics, besides the integer order considering an external effect, such as electromagnetic, gravity, and phase lags in a microstretch medium. The problem fractional form was formulated, and the boundary conditions were applied. The results were displayed graphically, considering the 3PHL model with magnetic field, gravity, and relaxation time. These findings were an explicit comparison of the effect of the plane wave reflection amplitude with integer derivative order analysis and noninteger derivative order analysis. The fractional order was compared to the correspondence integer order that indicated to the difference between them and agreement with the applications in biology, medicine, and other related topics. This phenomenon has more applications in relation to the biology and biomathematics problems.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Sefatbaqa Samane ◽  
Zahed Pasha Yadollah ◽  
Hasanpour Marzieh ◽  
Hajian - Tilaki Karimollah ◽  
Zarkesh Mohammad Reza ◽  
...  

Abstract Background Feedings based on behavioral cues is a method relying on infants’ behavioral expressions of readiness to feed. The objective of this interventional study was to determine the effect of cue-based feeding on the short-term health outcomes of preterm infants. Methods This quasi-experimental study utilized a historical or phase lag design. It involved 60 preterm infants admitted to an Iranian referral hospital’s Level III-Newborn Intensive Care Unit (NICU) from April 2017 until January 2018. The experimental group (n = 30) received a three-step intervention of offering behavioral-cue-based oral (BCBO) feedings: Step 1 – One BCBO feeding every 12 hours for 3 days; Step 2 - Two BCBO feedings every 12 h for 3 days; and Step 3 – All feedings as BCBO feedings for 3 days. The control group received standard care feedings. Group difference data were analyzed with SPSS version 16 using descriptive and inferential statistics. Results The infants’ mean weight at time of discharge for the intervention and control groups were 1492.79 ± 21.65 g and 1395.71 ± 17.61 g (P = .003) respectively. The mean durations of achieving full oral feedings in the intervention and control groups were 17 ± 6 and 20 ± 11 days, respectively (P = .19). The mean frequencies of hypoxia were 1 ± 1.54 and 5 ± 9.31 respectively (P = .03) and of gavage feedings 725 ± 584 and 1846 ± 2097 respectively (P = .009). No apnea events were reported for the intervention group; the frequency of apnea in the control group was 1 ± 2.11 (P = .16). Conclusion The findings indicate that cue-based feeding is beneficial for preterm infants. Therefore, it is recommended that nurses employ cue-based feeding in the NICU. Trial registration IRCTID: IRCT20170828035962N2. Registered 27 may 2018 – Retrospectively registered, https://en.irct.ir/trial/27024.


2022 ◽  
Vol 21 ◽  
pp. 18-22
Author(s):  
Tain-Sou Tsay

A digital controller for exact command tracking control without integration is derived from a periodic series. The ratios of adjacent values will be converged to unities after the output has tracked the reference input command. Integration in control loop usually introduces phase lag to slow command response and degrade performance.


2022 ◽  
Vol 15 ◽  
Author(s):  
Zhaobo Li ◽  
Xinzui Wang ◽  
Weidong Shen ◽  
Shiming Yang ◽  
David Y. Zhao ◽  
...  

Purpose: Tinnitus is a common but obscure auditory disease to be studied. This study will determine whether the connectivity features in electroencephalography (EEG) signals can be used as the biomarkers for an efficient and fast diagnosis method for chronic tinnitus.Methods: In this study, the resting-state EEG signals of tinnitus patients with different tinnitus locations were recorded. Four connectivity features [including the Phase-locking value (PLV), Phase lag index (PLI), Pearson correlation coefficient (PCC), and Transfer entropy (TE)] and two time-frequency domain features in the EEG signals were extracted, and four machine learning algorithms, included two support vector machine models (SVM), a multi-layer perception network (MLP) and a convolutional neural network (CNN), were used based on the selected features to classify different possible tinnitus sources.Results: Classification accuracy was highest when the SVM algorithm or the MLP algorithm was applied to the PCC feature sets, achieving final average classification accuracies of 99.42 or 99.1%, respectively. And based on the PLV feature, the classification result was also particularly good. And MLP ran the fastest, with an average computing time of only 4.2 s, which was more suitable than other methods when a real-time diagnosis was required.Conclusion: Connectivity features of the resting-state EEG signals could characterize the differentiation of tinnitus location. The connectivity features (PCC and PLV) were more suitable as the biomarkers for the objective diagnosing of tinnitus. And the results were helpful for clinicians in the initial diagnosis of tinnitus.


Sign in / Sign up

Export Citation Format

Share Document