scholarly journals Mirroring ‘meaningful’ actions: Sensorimotor learning modulates imitation of goal-directed actions

2018 ◽  
Vol 72 (2) ◽  
pp. 322-334 ◽  
Author(s):  
Caroline Catmur ◽  
Cecilia Heyes

Imitation is important in the development of social and technological skills throughout the lifespan. Experiments investigating the acquisition and modulation of imitation (and of its proposed neural substrate, the mirror neuron system) have produced evidence that the capacity for imitation depends on associative learning in which connections are formed between sensory and motor representations of actions. However, evidence that the development of imitation depends on associative learning has been found only for non-goal-directed actions. One reason for the lack of research on goal-directed actions is that imitation of such actions is commonly confounded with the tendency to respond in a spatially compatible manner. However, since the most prominent account of mirror neuron function, and hence of imitation, suggests that these cells encode goal-directed actions, it is important to establish whether sensorimotor learning can also modulate imitation of goal-directed actions. Experiment 1 demonstrated that imitation of goal-directed grasping can be measured while controlling for spatial compatibility, and Experiment 2 showed that this imitation effect can be modulated by sensorimotor training. Together, these data support the hypothesis that the capacity for behavioural imitation and the properties of the mirror neuron system are constructed in the course of development through associative learning.

2014 ◽  
Vol 37 (2) ◽  
pp. 215-216 ◽  
Author(s):  
Guy A. Orban

AbstractThe description of the mirror neuron system provided by Cook et al. is incomplete for the macaque, and incorrect for humans. This is relevant to exaptation versus associative learning as the underlying mechanism generating mirror neurons, and to the sensorimotor learning as evidence for the authors' viewpoint. The proposed additional testing of the mirror system in rodents is unrealistic.


2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2014 ◽  
Vol 37 (2) ◽  
pp. 203-204 ◽  
Author(s):  
S. Shaun Ho ◽  
Adam MacDonald ◽  
James E. Swain

AbstractMirror neuron–based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent–infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.


2014 ◽  
Vol 37 (2) ◽  
pp. 212-213 ◽  
Author(s):  
Lindsay M. Oberman ◽  
Edward M. Hubbard ◽  
Joseph P. McCleery

AbstractCook et al. argue that mirror neurons originate from associative learning processes, without evolutionary influence from social-cognitive mechanisms. We disagree with this claim and present arguments based upon cross-species comparisons, EEG findings, and developmental neuroscience that the evolution of mirror neurons is most likely driven simultaneously and interactively by evolutionarily adaptive psychological mechanisms and lower-level biological mechanisms that support them.


2010 ◽  
Vol 24 (5) ◽  
pp. 404-412 ◽  
Author(s):  
Kathleen A. Garrison ◽  
Carolee J. Winstein ◽  
Lisa Aziz-Zadeh

2007 ◽  
Author(s):  
Raphael Bernier ◽  
Geraldine Dawson ◽  
Stanley Lunde

Sign in / Sign up

Export Citation Format

Share Document