Sensitivity analysis of the M/M/1 retrial queue with working vacations and vacation interruption

Author(s):  
Lounes Ameur ◽  
Louiza Berdjoudj ◽  
Karim Abbas
2014 ◽  
Vol 31 (02) ◽  
pp. 1440006 ◽  
Author(s):  
SHAN GAO ◽  
JINTING WANG ◽  
WEI WAYNE LI

We consider an M/G/1 retrial queue with general retrial times, and introduce working vacations and vacation interruption policy into the retrial queue. During the working vacation period, customers can be served at a lower rate. If there are customers in the system at a service completion instant, the vacation will be interrupted and the server will come back to the normal working level. Using supplementary variable method, we obtain the stationary probability distribution and some performance measures. Furthermore, we carry out the waiting time distribution and prove the conditional stochastic decomposition for the queue length in orbit. Finally, some numerical examples are presented.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 758
Author(s):  
P. Rajadurai ◽  
R. Santhoshi ◽  
G. Pavithra ◽  
S. Usharani ◽  
S. B. Shylaja

A multi phase retrial queue with optional re-service and multiple working vacations is considered. The Probability Generating Function (PGF) of number of customers in the system is obtained by supplementary variable technique. Various system performance measures are discussed. 


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Li Tao ◽  
Liyuan Zhang ◽  
Shan Gao

We consider an M/M/1 retrial queue with working vacations, vacation interruption, Bernoulli feedback, and N-policy simultaneously. During the working vacation period, customers can be served at a lower rate. Using the matrix-analytic method, we get the necessary and sufficient condition for the system to be stable. Furthermore, the stationary probability distribution and some performance measures are also derived. Moreover, we prove the conditional stochastic decomposition for the queue length in the orbit. Finally, we present some numerical examples and use the parabolic method to search the optimum value of service rate in working vacation period.


Sign in / Sign up

Export Citation Format

Share Document