working vacation
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 63)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 13 (2) ◽  
pp. 367-395
Author(s):  
Shakir Majid ◽  
Amina Angelika Bouchentouf ◽  
Abdelhak Guendouzi

Abstract In this investigation, we establish a steady-state solution of an infinite-space single-server Markovian queueing system with working vacation (WV), Bernoulli schedule vacation interruption, and impatient customers. Once the system becomes empty, the server leaves the system and takes a vacation with probability p or a working vacation with probability 1 − p, where 0 ≤ p ≤ 1. The working vacation period is interrupted if the system is non empty at a service completion epoch and the server resumes its regular service period with probability 1 − q or carries on with the working vacation with probability q. During vacation and working vacation periods, the customers may be impatient and leave the system. We use a probability generating function technique to obtain the expected number of customers and other system characteristics. Stochastic decomposition of the queueing model is given. Then, a cost function is constructed by considering different cost elements of the system states, in order to determine the optimal values of the service rate during regular busy period, simultaneously, to minimize the total expected cost per unit time by using a quadratic fit search method (QFSM). Further, by taking illustration, numerical experiment is performed to validate the analytical results and to examine the impact of different parameters on the system characteristics.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012018
Author(s):  
G. Kannadasan ◽  
V. Padmavathi

Abstract Using fuzzy techniques “Classical Fuzzy Retrial Queue with Working Vacation(WV) using Hexagonal Fuzzy Numbers” is discussed in this paper. We acquire model in fuzzy environment as the average orbit length, Probability(Pr) that the server busy, and Pr(the server is in a WV period), the sojourn time of a customer in the queue. Finally numerical results are presented.


2021 ◽  
Vol 13 (3) ◽  
pp. 833-844
Author(s):  
P. Gupta ◽  
N. Kumar

In this present paper, an M/M/1 retrial queueing model with a waiting server subject to breakdown and repair under working vacation, vacation interruption is considered. Customers are served at a slow rate during the working vacation period, and the server may undergo breakdowns from a normal busy state. The customer has to wait in orbit for the service until the server gets repaired. Steady-state solutions are obtained using the probability generating function technique. Probabilities of different server states and some other performance measures of the system are developed.  The variation in mean orbit size, availability of the server, and server state probabilities are plotted for different values of breakdown parameter and repair rate with the help of MATLAB software. Finally, cost optimization of the system is also discussed, and the optimal value of the slow service rate for the model is obtained.


2021 ◽  
Vol 55 (5) ◽  
pp. 2807-2825
Author(s):  
Yitong Zhang ◽  
Xiuli Xu

This paper considers the equilibrium balking behavior of customers in a single-server Markovian queue with variable vacation and vacation interruption, where the server can switch across four states: vacation, working vacation, idle period, and busy period. Once the queue becomes empty, the server commences a working vacation and slows down its service rate. However, this period may be interrupted anytime by the vacation interruption. Upon the completion of a working vacation, the server takes a vacation in a probability-based manner and stops service if the system is empty. The system stays idle after a vacation until a new customer arrives. The comparisons between the equilibrium balking strategy of customers and the optimal expected social benefit per time unit for each type of queue are elucidated and the inconsistency between the individual optimization and the social optimization is revealed. Moreover, the sensitivity of the expected social benefit and the equilibrium threshold with respect to the several parameters as well as diverse precision levels is illustrated through numerical examples in a competitive cloud environment.


2021 ◽  
Vol 1849 (1) ◽  
pp. 012021
Author(s):  
Praveen Kumar Agrawal ◽  
Anamika Jain ◽  
Madhu Jain

Sign in / Sign up

Export Citation Format

Share Document