scholarly journals On the applicability of Network-Oriented Modelling based on temporal-causal networks: why network models do not just model networks

2017 ◽  
Vol 1 (1) ◽  
pp. 23-40 ◽  
Author(s):  
Jan Treur
2019 ◽  
Vol 30 (1) ◽  
pp. 14-32
Author(s):  
Joe Moeller

AbstractNetwork models, which abstractly are given by lax symmetric monoidal functors, are used to construct operads for modeling and designing complex networks. Many common types of networks can be modeled with simple graphs with edges weighted by a monoid. A feature of the ordinary construction of network models is that it imposes commutativity relations between all edge components. Because of this, it cannot be used to model networks with bounded degree. In this paper, we construct the free network model on a given monoid, which can model networks with bounded degree. To do this, we generalize Green’s graph products of groups to pointed categories which are finitely complete and cocomplete.


2019 ◽  
Vol 42 ◽  
Author(s):  
Hanna M. van Loo ◽  
Jan-Willem Romeijn

AbstractNetwork models block reductionism about psychiatric disorders only if models are interpreted in a realist manner – that is, taken to represent “what psychiatric disorders really are.” A flexible and more instrumentalist view of models is needed to improve our understanding of the heterogeneity and multifactorial character of psychiatric disorders.


2019 ◽  
Vol 42 ◽  
Author(s):  
Don Ross

AbstractUse of network models to identify causal structure typically blocks reduction across the sciences. Entanglement of mental processes with environmental and intentional relationships, as Borsboom et al. argue, makes reduction of psychology to neuroscience particularly implausible. However, in psychiatry, a mental disorder can involve no brain disorder at all, even when the former crucially depends on aspects of brain structure. Gambling addiction constitutes an example.


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


1995 ◽  
Author(s):  
Robert T. Trotter ◽  
Anne M. Bowen ◽  
James M. Potter

2012 ◽  
Author(s):  
Reid Hastie ◽  
Benjamin M. Rottman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document