Selective attention modulates implicit learning

2001 ◽  
Vol 54 (4) ◽  
pp. 1105-1124 ◽  
Author(s):  
Yuhong Jiang ◽  
Marvin M. Chun

The effect of selective attention on implicit learning was tested in four experiments using the “contextual cueing” paradigm (Chun & Jiang, 1998, 1999). Observers performed visual search through items presented in an attended colour (e.g., red) and an ignored colour (e.g., green). When the spatial configuration of items in the attended colour was invariant and was consistently paired with a target location, visual search was facilitated, showing contextual cueing (Experiments 1, 3, and 4). In contrast, repeating and pairing the configuration of the ignored items with the target location resulted in no contextual cueing (Experiments 2 and 4). We conclude that implicit learning is robust only when relevant, predictive information is selectively attended.

NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 887-897 ◽  
Author(s):  
Stefan Pollmann ◽  
Jana Eštočinová ◽  
Susanne Sommer ◽  
Leonardo Chelazzi ◽  
Wolf Zinke

2019 ◽  
Vol 31 (3) ◽  
pp. 442-452 ◽  
Author(s):  
Artyom Zinchenko ◽  
Markus Conci ◽  
Paul C. J. Taylor ◽  
Hermann J. Müller ◽  
Thomas Geyer

This study investigates the causal contribution of the left frontopolar cortex (FPC) to the processing of violated expectations from learned target–distractor spatial contingencies during visual search. The experiment consisted of two phases: learning and test. Participants searched for targets presented either among repeated or nonrepeated target–distractor configurations. Prior research showed that repeated encounters of identically arranged displays lead to memory about these arrays, which then can come to guide search (contextual cueing effect). The crucial manipulation was a change of the target location, in a nevertheless constant distractor layout, at the transition from learning to test. In addition to this change, we applied repetitive transcranial magnetic stimulation (rTMS) over the left lateral FPC, over a posterior control site, or no rTMS at all (baseline; between-group manipulation) to see how FPC rTMS influences the ability of observers to adapt context-based memories acquired in the training phase. The learning phase showed expedited search in repeated relative to nonrepeated displays, with this context-based facilitation being comparable across all experimental groups. For the test phase, the recovery of cueing was critically dependent on the stimulation site: Although there was evidence of context adaptation toward the end of the experiment in the occipital and no-rTMS conditions, observers with FPC rTMS showed no evidence of relearning at all after target location changes. This finding shows that FPC plays an important role in the regulation of prediction errors in statistical context learning, thus contributing to an update of the spatial target–distractor contingencies after target position changes in learned spatial arrays.


2019 ◽  
Vol 82 (4) ◽  
pp. 1682-1694
Author(s):  
Siyi Chen ◽  
Zhuanghua Shi ◽  
Xuelian Zang ◽  
Xiuna Zhu ◽  
Leonardo Assumpção ◽  
...  

AbstractIt is well established that statistical learning of visual target locations in relation to constantly positioned visual distractors facilitates visual search. In the present study, we investigated whether such a contextual-cueing effect would also work crossmodally, from touch onto vision. Participants responded to the orientation of a visual target singleton presented among seven homogenous visual distractors. Four tactile stimuli, two to different fingers of each hand, were presented either simultaneously with or prior to the visual stimuli. The identity of the stimulated fingers provided the crossmodal context cue: in half of the trials, a given visual target location was consistently paired with a given tactile configuration. The visual stimuli were presented above the unseen fingers, ensuring spatial correspondence between vision and touch. We found no evidence of crossmodal contextual cueing when the two sets of items (tactile, visual) were presented simultaneously (Experiment 1). However, a reliable crossmodal effect emerged when the tactile distractors preceded the onset of visual stimuli 700 ms (Experiment 2). But crossmodal cueing disappeared again when, after an initial learning phase, participants flipped their hands, making the tactile distractors appear at different positions in external space while their somatotopic positions remained unchanged (Experiment 3). In all experiments, participants were unable to explicitly discriminate learned from novel multisensory arrays. These findings indicate that search-facilitating context memory can be established across vision and touch. However, in order to guide visual search, the (predictive) tactile configurations must be remapped from their initial somatotopic into a common external representational format.


2007 ◽  
Vol 60 (10) ◽  
pp. 1321-1328 ◽  
Author(s):  
Valeria Rausei ◽  
Tal Makovski ◽  
Yuhong V. Jiang

How much attention is needed to produce implicit learning? Previous studies have found inconsistent results, with some implicit learning tasks requiring virtually no attention while others rely on attention. In this study we examine the degree of attentional dependency in implicit learning of repeated visual search context. Observers searched for a target among distractors that were either highly similar to the target or dissimilar to the target. We found that the size of contextual cueing was comparable from repetition of the two types of distractors, even though attention dwelled much longer on distractors highly similar to the target. We suggest that beyond a minimal amount, further increase in attentional dwell time does not contribute significantly to implicit learning of repeated search context.


Author(s):  
Markus Conci ◽  
Martina Zellin

AbstractVisual search for a target is faster when the spatial layout of nontarget items is repeatedly encountered, illustrating that learned contextual invariances can improve attentional selection (contextual cueing). This type of contextual learning is usually relatively efficient, but relocating the target to an unexpected location (within otherwise unchanged layouts) typically abolishes contextual cueing. Here, we explored whether bottom-up attentional guidance can mediate the efficient contextual adaptation after the change. Two experiments presented an initial learning phase, followed by a subsequent relocation phase that introduced target location changes. This location change was accompanied by transient attention-guiding signals that either up-modulated the changed target location (Experiment 1), or which provided an inhibitory tag to down-modulate the initial target location (Experiment 2). The results from these two experiments showed reliable contextual cueing both before and after the target location change. By contrast, an additional control experiment (Experiment 3) that did not present any attention-guiding signals together with the changed target showed no reliable cueing in the relocation phase, thus replicating previous findings. This pattern of results suggests that attentional guidance (by transient stimulus-driven facilitatory and inhibitory signals) enhances the flexibility of long-term contextual learning.


2019 ◽  
Author(s):  
Eelke Spaak ◽  
Floris P. de Lange

AbstractObservers rapidly and seemingly automatically learn to predict where to expect relevant items when those items are repeatedly presented in the same spatial context. This form of statistical learning in visual search has been studied extensively using a paradigm known as contextual cueing. The neural mechanisms underlying the learning and exploiting of such regularities remain unclear. We sought to elucidate these by examining behaviour and recording neural activity using magneto-encephalography (MEG) while observers were implicitly acquiring and exploiting statistical regularities. Computational modelling of behavioural data suggested that after repeated exposures to a spatial context, participants’ behaviour was marked by an abrupt switch to an exploitation strategy of the learnt regularities. MEG recordings showed that the initial learning phase was associated with larger hippocampal theta band activity for repeated scenes, while the subsequent exploitation phase showed larger prefrontal theta band activity for these repeated scenes. Strikingly, the behavioural benefit of repeated exposures to certain scenes was inversely related to explicit awareness of such repeats, demonstrating the implicit nature of the expectations acquired. This elucidates how theta activity in the hippocampus and prefrontal cortex underpins the implicit learning and exploitation of spatial statistical regularities to optimize visual search behaviour.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


Sign in / Sign up

Export Citation Format

Share Document