Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: Potential role in neuropathogenesis

2004 ◽  
Vol 10 (s1) ◽  
pp. 25-32
Author(s):  
Zhuying Wang ◽  
Gusta Trillo-Pazos ◽  
Seon-Young Kim ◽  
Mario Canki ◽  
Susan Morgello ◽  
...  
1991 ◽  
Vol 11 (7) ◽  
pp. 3522-3527
Author(s):  
S Yamagoe ◽  
T Kohda ◽  
M Oishi

Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed.


2004 ◽  
Vol 78 (20) ◽  
pp. 11263-11271 ◽  
Author(s):  
Audrey Brussel ◽  
Pierre Sonigo

ABSTRACT The integrated form of human immunodeficiency virus type 1 (HIV-1) DNA is classically considered to be the sole template for viral gene expression. However, several studies have suggested that unintegrated viral DNA species could also support transcription. To determine the contribution of the different species of HIV-1 DNA to viral expression, we first monitored intracellular levels of various HIV-1 DNA and RNA species in a single-round infection assay. We observed that, in comparison to the precocity of HIV-1 DNA synthesis, viral expression was delayed, suggesting that only the HIV-1 DNA species that persist for a sufficient period of time would be transcribed efficiently. We next evaluated the transcriptional activity of the circular forms of HIV-1 DNA bearing two long terminal repeats, since these episomes were reported to exhibit an intrinsic molecular stability. Our results support the notion that these circular species of HIV-1 DNA are naturally transcribed during HIV-1 infection, thereby participating in virus replication.


Sign in / Sign up

Export Citation Format

Share Document