THE GIBBS PHENOMENON, THE PINSKY PHENOMENON, AND VARIANTS FOR EIGENFUNCTION EXPANSIONS

2002 ◽  
Vol 27 (3-4) ◽  
pp. 565-605 ◽  
Author(s):  
Michael E. Taylor
Author(s):  
E.B. Solovyeva ◽  
◽  
Yu.M. Inshakov ◽  

General approaches to the analysis of the Gibbs phenomenon for discontinuous periodic signals approximated by the truncated Fourier series are considered. Methods for smoothing the truncated Fourier series and improving its convergence are discussed. The software means for modeling is a universal measuring complex LabVIEW, which possesses a convenient environment for analyzing electrical signals, on the basis of this complex a laboratory experiment is carried out. The advantages of the measuring LabVIEW complex and its capabilities for in-depth study of discontinuous periodic signals are noted.


2021 ◽  
Vol 386 ◽  
pp. 107815
Author(s):  
Pritam Ganguly ◽  
Sundaram Thangavelu

Author(s):  
Keh-Yang Lee ◽  
Anthony A. Renshaw

Abstract A new solution technique is developed for solving the moving mass problem for nonconservalive, linear, distributed parameter systems using complex eigenfunction expansions. Traditional Galerkin analysis of this problem using complex eigenfunctions fails in the limit of large numbers of terms because complex eigenfunctions are not linearly independent. This linear dependence problem is circumvented in the method proposed here by applying a modal constraint on the velocity of the distributed parameter system (Renshaw, 1997). This constraint is valid for all complete sets of eigenfunctions but must be applied with care for finite dimensional approximations of concentrated loads such as found in the moving mass problem. A set of real differential ordinary equations in time are derived which require exactly as much work to solve as Galerkin’s method with a set of real, linearly independent trial functions. Results indicate that the proposed method is competitive with traditional Galerkin’s method in terms of speed, accuracy and convergence.


Sign in / Sign up

Export Citation Format

Share Document