scholarly journals Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X

2013 ◽  
Vol 204 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Po-Chao Chan ◽  
Rosaline Y.C. Hsu ◽  
Chih-Wei Liu ◽  
Chien-Chen Lai ◽  
Hong-Chen Chen

Mitotic spindles are microtubule-based structures, but increasing evidence indicates that filamentous actin (F-actin) and F-actin–based motors are components of these structures. ADD1 (adducin-1) is an actin-binding protein that has been shown to play important roles in the stabilization of the membrane cortical cytoskeleton and cell–cell adhesions. In this study, we show that ADD1 associates with mitotic spindles and is crucial for proper spindle assembly and mitotic progression. Phosphorylation of ADD1 at Ser12 and Ser355 by cyclin-dependent kinase 1 enables ADD1 to bind to myosin-X (Myo10) and therefore to associate with mitotic spindles. ADD1 depletion resulted in distorted, elongated, and multipolar spindles, accompanied by aberrant chromosomal alignment. Remarkably, the mitotic defects caused by ADD1 depletion were rescued by reexpression of ADD1 but not of an ADD1 mutant defective in Myo10 binding. Together, our findings unveil a novel function for ADD1 in mitotic spindle assembly through its interaction with Myo10.

2021 ◽  
Author(s):  
Thomas Tischer ◽  
Jing Yang ◽  
David Barford

The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and as an APC/C substrate. Previous studies showed that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitination of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.


2017 ◽  
Vol 16 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Silvia Martini ◽  
Tanya Soliman ◽  
Giuliana Gobbi ◽  
Prisco Mirandola ◽  
Cecilia Carubbi ◽  
...  

2020 ◽  
Author(s):  
Thomas Tischer ◽  
Jing Yang ◽  
David Barford

AbstractThe control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has long been speculated that the APC/C might fulfil other functions including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. The APC/C is recruited to spindle poles by the centrosomal protein Cep152, and we identified Cep152 as both a novel APC/C interaction partner, and as an APC/C substrate. Importantly, this revealed a mitotic function of Cep152 that is reciprocally regulated by the APC/C. A destruction-defective mutant of Cep152 showed that the timely regulation of Cep152 levels at the centrosome controls spindle assembly and chromosome segregation. The APC/C-mediated degradation of Cep152 at the centrosome releases Cep57 from an inhibitory complex to enable its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.


2016 ◽  
Vol 3 (3) ◽  
pp. e1062952 ◽  
Author(s):  
Suzanna L. Prosser ◽  
Laura O'Regan ◽  
Andrew M. Fry

Sign in / Sign up

Export Citation Format

Share Document