centrosomal protein
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 44)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Thomas Tischer ◽  
Jing Yang ◽  
David Barford

The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and as an APC/C substrate. Previous studies showed that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitination of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding centrosomal protein 55, CEP55, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. CEP55 expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. CEP55 expression correlated with overall survival in patients with ovarian cancer. These data indicate that expression of CEP55 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. CEP55 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
André B Goncalves ◽  
Sarah K Hasselbalch ◽  
Beinta B Joensen ◽  
Sebastian Patzke ◽  
Pernille Martens ◽  
...  

CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.


2021 ◽  
Author(s):  
Qiannan Deng ◽  
Cheng Wang ◽  
Chwee Tat Koe ◽  
Jan Peter Heinen ◽  
Ye Sing Tan ◽  
...  

Neural stem cells (NSCs) divide asymmetrically to balance their self-renewal and differentiation. The imbalance can lead to NSC overgrowth and tumour formation. The function of Parafibromin, a conserved tumour suppressor, in the nervous system is not established. Here, we demonstrate that Drosophila Parafibromin/Hyrax (Hyx) inhibits NSC overgrowth by governing the cell polarity. Hyx is essential for the apicobasal polarity by localizing both apical and basal proteins asymmetrically in NSCs. hyx loss results in the symmetric division of NSCs, leading to the formation of supernumerary NSCs in the larval brain. Human Parafibromin fully rescues NSC overgrowth and cell polarity defects in Drosophila hyx mutant brains. Hyx plays a novel role in maintaining interphase microtubule-organizing center and mitotic spindle formation in NSCs. Hyx is required for the proper localization of a key centrosomal protein Polo and microtubule-binding proteins Msps and D-TACC in dividing NSCs. This study discovers that Hyx has a brain tumour suppressor-like function and maintains NSC polarity by regulating centrosome function and microtubule growth. The new paradigm that Parafibromin orchestrates cell polarity and centrosomal assembly may be relevant to Parafibromin/HRPT2-associated cancers.


2021 ◽  
Author(s):  
Shahan Mamoor

Gynecologic cancers including cancers of the endometrium are a clinical problem (1-4). We mined published microarray data (5, 6) to discover genes associated with endometrial cancers by comparing transcriptomes of the normal endometrium and endometrial tumors from humans. We identified centrosomal protein 55, encoded by CEP55, as among the most differentially expressed genes, transcriptome-wide, in cancers of the endometrium. CEP55 was expressed at significantly higher levels in endometrial tumor tissues as compared to the endometrium. Importantly, in human endometrial cancer, primary tumor expression of CEP55 was correlated with overall survival in white patients with low mutational burden. CEP55 may be a molecule of interest in understanding the etiology or progression of human endometrial cancer.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenchang Xiao ◽  
Danna Yeerken ◽  
Jia Li ◽  
Zhangfu Li ◽  
Lanfang Jiang ◽  
...  

AbstractAutophagy is the main degradation pathway to eliminate long-lived and aggregated proteins, aged or malfunctioning organelles, which is essential for the intracellular homeostasis and prevention of malignant transformation. Although the processes of autophagosome biogenesis have been well illuminated, the mechanism of autophagosome transport remains largely unclear. In this study, we demonstrated that the ninein-like protein (Nlp), a well-characterized centrosomal associated protein, was able to modulate autophagosome transport and facilitate autophagy. During autophagy, Nlp colocalized with autophagosomes and physically interacted with autophagosome marker LC3, autophagosome sorting protein Rab7 and its downstream effector FYCO1. Interestingly, Nlp enhanced the interaction between Rab7 and FYCO1, thus accelerated autophagic flux and the formation of autophagolysosomes. Furthermore, compared to the wild-type mice, NLP deficient mice treated with chemical agent DMBA were prone to increased incidence of hepatomegaly and liver cancer, which were tight associated with the hepatic autophagic defect. Taken together, our findings provide a new insight for the first time that the well-known centrosomal protein Nlp is also a new regulator of autophagy, which promotes the interaction of Rab7 and FYCO1 and facilitates the formation of autophagolysosome.


FEBS Letters ◽  
2021 ◽  
Author(s):  
Zhangqi Xu ◽  
Min Liu ◽  
Cheng Gao ◽  
Wenjun Kuang ◽  
Xiying Chen ◽  
...  

Biology Open ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. bio056432 ◽  
Author(s):  
Shohei Yamamoto ◽  
Ryoichi Yabuki ◽  
Daiju Kitagawa

ABSTRACTThe deuterosome is a non-membranous organelle involved in large-scale centriole amplification during multiciliogenesis. Deuterosomes are specifically assembled during the process of multiciliogenesis. However, the molecular mechanisms underlying deuterosome formation are poorly understood. In this study, we investigated the molecular properties of deuterosome protein 1 (Deup1), an essential protein involved in deuterosome assembly. We found that Deup1 has the ability to self-assemble into macromolecular condensates both in vitro and in cells. The Deup1-containing structures formed in multiciliogenesis and the Deup1 condensates self-assembled in vitro showed low turnover of Deup1, suggesting that Deup1 forms highly stable structures. Our biochemical analyses revealed that an increase of the concentration of Deup1 and a crowded molecular environment both facilitate Deup1 self-assembly. The self-assembly of Deup1 relies on its N-terminal region, which contains multiple coiled coil domains. Using an optogenetic approach, we demonstrated that self-assembly and the C-terminal half of Deup1 were sufficient to spatially compartmentalize centrosomal protein 152 (Cep152) and polo like kinase 4 (Plk4), master components for centriole biogenesis, in the cytoplasm. Collectively, the present data suggest that Deup1 forms the structural core of the deuterosome through self-assembly into stable macromolecular condensates.This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adham Safieddine ◽  
Emeline Coleno ◽  
Soha Salloum ◽  
Arthur Imbert ◽  
Abdel-Meneem Traboulsi ◽  
...  

AbstractLocal translation allows for a spatial control of gene expression. Here, we use high-throughput smFISH to screen centrosomal protein-coding genes, and we describe 8 human mRNAs accumulating at centrosomes. These mRNAs localize at different stages during cell cycle with a remarkable choreography, indicating a finely regulated translational program at centrosomes. Interestingly, drug treatments and reporter analyses reveal a common translation-dependent localization mechanism requiring the nascent protein. UsingASPMandNUMA1as models, single mRNA and polysome imaging reveals active movements of endogenous polysomes towards the centrosome at the onset of mitosis, when these mRNAs start localizing. ASPM polysomes associate with microtubules and localize by either motor-driven transport or microtubule pulling. Remarkably, theDrosophilaorthologs of the human centrosomal mRNAs also localize to centrosomes and also require translation. These data identify a conserved family of centrosomal mRNAs that localize by active polysome transport mediated by nascent proteins.


Sign in / Sign up

Export Citation Format

Share Document