ribonucleoprotein complex
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 50)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 712
Author(s):  
Pramod Shah ◽  
Chien-Sheng Chen

Cell-penetrating peptides (CPPs) have distinct properties to translocate across cell envelope. The key property of CPPs to translocation with attached molecules has been utilized as vehicles for the delivery of several potential drug candidates that illustrate the significant effect in in-vitro experiment but fail in in-vivo experiment due to selectively permeable nature of cell envelop. Penetratin, a well-known CPP identified from the third α-helix of Antennapedia homeodomain of Drosophila, has been widely used and studied for the delivery of bioactive molecules to treat cancers, stroke, and infections caused by pathogenic organisms. Few studies have demonstrated that penetratin directly possesses antimicrobial activities against bacterial and fungal pathogens; however, the mechanism is unknown. In this study, we have utilized the power of high-throughput Saccharomyces cerevisiae proteome microarrays to screen all the potential protein targets of penetratin. Saccharomyces cerevisiae proteome microarrays assays of penetratin followed by statistical analysis depicted 123 Saccharomyces cerevisiae proteins as the protein targets of penetratin out of ~5800 Saccharomyces cerevisiae proteins. To understand the target patterns of penetratin, enrichment analyses were conducted using 123 protein targets. In biological process: ribonucleoprotein complex biogenesis, nucleic acid metabolic process, actin filament-based process, transcription, DNA-templated, and negative regulation of gene expression are a few significantly enriched terms. Cytoplasm, nucleus, and cell-organelles are enriched terms for cellular component. Protein-protein interactions network depicted ribonucleoprotein complex biogenesis, cortical cytoskeleton, and histone binding, which represent the major enriched terms for the 123 protein targets of penetratin. We also compared the protein targets of penetratin and intracellular protein targets of antifungal AMPs (Lfcin B, Histatin-5, and Sub-5). The comparison results showed few unique proteins between penetratin and AMPs. Nucleic acid metabolic process and cellular component disassembly were the common enrichment terms for penetratin and three AMPs. Penetratin shows unique enrichment items that are related to DNA biological process. Moreover, motif enrichment analysis depicted different enriched motifs in the protein targets of penetratin, LfcinB, Histatin-5, and Sub-5.


mBio ◽  
2022 ◽  
Author(s):  
Sho Miyamoto ◽  
Masahiro Nakano ◽  
Takeshi Morikawa ◽  
Ai Hirabayashi ◽  
Ryoma Tamura ◽  
...  

Influenza A virus ribonucleoprotein complex (RNP) is responsible for viral genome replication, thus playing essential roles in the virus life cycle. RNP formation occurs in the nuclei of infected cells; however, little is known about the nuclear domains involved in this process.


2021 ◽  
Author(s):  
Diego J Paez-Moscoso ◽  
David V Ho ◽  
Lili Pan ◽  
Katie Hildebrand ◽  
Kristi L Jensen ◽  
...  

Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. Additional subunits are required for ribonucleoprotein complex assembly and in some cases remain stably associated with the active holoenzyme. Pof8, a member of the LARP7 protein family is such a constitutive component of telomerase in fission yeast. Using affinity purification of Pof8, we have identified two previously uncharacterized proteins that form a complex with Pof8 and participate in telomerase biogenesis. Both proteins participate in ribonucleoprotein complex assembly and are required for wildtype telomerase activity and telomere length maintenance. One factor we named Thc1 (Telomerase Holoenzyme Component 1) shares structural similarity with the nuclear cap binding complex and the poly-adenosine ribonuclease (PARN), the other is the ortholog of the methyl phosphate capping enzyme (Bin3/MePCE) in metazoans and was named Bmc1 (Bin3/MePCE 1) to reflect its evolutionary roots. Thc1 and Bmc1 function together with Pof8 in recognizing correctly folded telomerase RNA and promoting the recruitment of the Lsm2-8 complex and the catalytic subunit to assemble functional telomerase.


Author(s):  
Qihao He ◽  
Tao Zhou ◽  
Jikang Sun ◽  
Ping Wang ◽  
Chunping Yang ◽  
...  

Cadmium (Cd) pollution is a widespread environmental problem. In this study, we explored the transcriptome and biochemical responses of goldenrain tree (Koelreuteria paniculata Laxm.) leaves and roots to Cd stress. Leaf and root growth decreased substantially under Cd stress (50 mg/L CdCl2), but leaf and root antioxidant mechanisms were significantly activated. In RNA-seq analysis, roots treated with 25 mg/L CdCl2 featured enriched GO terms in cellular components related to intracellular ribonucleoprotein complex, ribonucleoprotein complex, and macromolecular complex. In leaves under Cd stress, most differentially expressed genes were enriched in the cellular component terms intrinsic component of membrane and membrane part. Weighted gene co-expression network analysis and analysis of module–trait relations revealed candidate genes associated with superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA). Ten transcription factors responded to Cd stress expression, including those in C2H2, MYB, WRKY, and bZIP families. Transcriptomic analysis of goldenrain tree revealed that Cd stress rapidly induced the intracellular ribonucleoprotein complex in the roots and the intrinsic component of membrane in the leaves. The results also indicate directions for further analyses of molecular mechanisms of Cd tolerance and accumulation in goldenrain tree.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2099
Author(s):  
Yunxing Liu ◽  
Fang Liang ◽  
Zijiong Dong ◽  
Song Li ◽  
Jianmin Ye ◽  
...  

The CRISPR/Cas9 system has been widely used for gene editing in zebrafish. However, the required NGG protospacer adjacent motif (PAM) of Streptococcus pyogenes Cas9 (SpCas9) notably restricts the editable range of the zebrafish genome. Recently, Cas9 from S. canis (ScCas9), which has a more relaxed 5′-NNG-3′ PAM, was reported to have activities in human cells and plants. However, the editing ability of ScCas9 has not been tested in zebrafish. Here we characterized and optimized the activity of ScCas9 in zebrafish. Delivered as a ribonucleoprotein complex, ScCas9 can induce mutations in zebrafish. Using the synthetic modified crRNA:tracrRNA duplex instead of in vitro-transcribed single guide RNA, the low activity at some loci were dramatically improved in zebrafish. As far as we know, our work is the first report on the evaluation of ScCas9 in animals. Our work optimized ScCas9 as a new nuclease for targeting relaxed NNG PAMs for zebrafish genome editing, which will further improve genome editing in zebrafish.


2021 ◽  
Author(s):  
Xuhang Liu ◽  
Hanan Alwaseem ◽  
Henrik Molina ◽  
Bernardo Tavora ◽  
Sohail F. Tavazoie

SUMMARYStress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to human, yet its mechanistic bases and pathological consequences remain poorly defined. By performing genome-wide small RNA profiling, we detected increased abundance of a Cysteine tRNA fragment (5’-tRFCys) during breast cancer metastatic progression. 5’’-tRFCys is required for efficient breast cancer metastatic lung colonization and metastatic cell survival. We identified Nucleolin as the direct binding partner of 5’-tRFCys. 5’-tRFCys binding enhanced the stability of Nucleolin’s associated pro-metastatic transcripts encoding metabolic enzymes Mthfd1l and Pafah1b1. 5’-tRFCys stabilized these transcripts by promoting Nucleolin oligomerization and the assembly of Nucleolin and its bound transcripts into a higher-order ribonucleoprotein complex. Our findings reveal that a tRF can promote oligomerization of an RNA binding protein into a stabilizing ribonucleoprotein complex containing specific target transcripts, thereby driving specific metabolic pathways underlying cancer progression.


2021 ◽  
Vol 2 (1) ◽  
pp. 100315
Author(s):  
Yunrong Gao ◽  
Dongdong Cao ◽  
Shristi Pawnikar ◽  
Sana Akhter ◽  
Yinglong Miao ◽  
...  

2021 ◽  
Author(s):  
Sho Miyamoto ◽  
Masahiro Nakano ◽  
Takeshi Morikawa ◽  
Ai Hirabayashi ◽  
Ryoma Tamura ◽  
...  

AbstractInfluenza A virus double-helical ribonucleoprotein complex (vRNP) performs transcription and replication of viral genomic RNA (vRNA). Unlike most RNA viruses, vRNP formation accompanied by vRNA replication is carried out in the nucleus of virus-infected cell. However, the precise subnuclear site remains unknown. Here, we report the subnuclear site of vRNP formation in influenza virus. We found that all vRNP components were colocalized in the nucleolus of virus-infected cells at early stage of infection. Mutational analysis showed that nucleolar localization of viral nucleoprotein, a major vRNP component, is critical for functional double-helical vRNP formation. Furthermore, nucleolar disruption of virus-infected cells inhibited vRNP component assembly into double-helical vRNPs, resulting in decreased vRNA transcription and replication. Collectively, our findings demonstrate that the vRNA replication-coupled vRNP formation occurs in the nucleolus, demonstrating the importance of the nucleolus for influenza virus life cycle.


Sign in / Sign up

Export Citation Format

Share Document