mitotic spindle assembly
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 42)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Thomas Tischer ◽  
Jing Yang ◽  
David Barford

The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and as an APC/C substrate. Previous studies showed that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitination of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjie Sun ◽  
Mingkang Jia ◽  
He Ren ◽  
Biying Yang ◽  
Wangfei Chi ◽  
...  

AbstractA functional mitotic spindle is essential for accurate chromosome congression and segregation during cell proliferation; however, the underlying mechanisms of its assembly remain unclear. Here we show that NuMA regulates this assembly process via phase separation regulated by Aurora A. NuMA undergoes liquid-liquid phase separation during mitotic entry and KifC1 facilitates NuMA condensates concentrating on spindle poles. Phase separation of NuMA is mediated by its C-terminus, whereas its dynein-dynactin binding motif also facilitates this process. Phase-separated NuMA droplets concentrate tubulins, bind microtubules, and enrich crucial regulators, including Kif2A, at the spindle poles, which then depolymerizes spindle microtubules and promotes poleward spindle microtubule flux for spindle assembly and structural dynamics. In this work, we show that NuMA orchestrates mitotic spindle assembly, structural dynamics and function via liquid-liquid phase separation regulated by Aurora A phosphorylation.


2021 ◽  
Author(s):  
Julia V. Popova ◽  
Gera A. Pavlova ◽  
Alyona V. Razuvaeva ◽  
Lyubov A. Yarinich ◽  
Evgeniya N. Andreyeva ◽  
...  

Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but allows KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM) and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6 and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1 and Patronin positively regulate polymerization, bundling and stabilization of regrowing MTs until a bipolar spindle is reformed.


2021 ◽  
Author(s):  
Stanley Nithiananatham ◽  
Malina K. Iwanski ◽  
Ignas Gaska ◽  
Himanshu Pandey ◽  
Tatyana Bodrug ◽  
...  

The conserved kinesin-5 bipolar tetrameric motors slide apart microtubules during mitotic spindle assembly and elongation. Kinesin-5 bipolar organization originates from its conserved tetrameric helical minifilament, which position the C-terminal tail domains of two subunits near the N-terminal motor domains of two anti-parallel subunits (Scholey et al, 2014). This unique tetrameric structure enables kinesin-5 to simultaneously engage two microtubules and transmit forces between them, and for multiple kinesin-5 motors to organize via tail to motor interactions during microtubule sliding (Bodrug et al, 2020). Here, we show how these two structural adaptations, the kinesin-5 tail-motor domain interactions and the length of the tetrameric minifilament, determine critical aspects of kinesin-5 motility and sliding mechanisms. An x-ray structure of the 34-nm kinesin-5 minifilament reveals how the dual dimeric N-terminal coiled-coils emerge from the tetrameric central bundle. Using this structure, we generated active bipolar mini-tetrameric motors from Drosophila and human orthologs, which are half the length of native kinesin-5. Using single-molecule motility assays, we show that kinesin-5 tail domains promote mini-tetramers static pauses that punctuate processive motility. During such pauses, kinesin-5 mini-tetramers form multi-motor clusters mediated via tail to motor domain cross-interactions. These clusters undergo slow and highly processive motility and accumulate at microtubule plus-ends. In contrast to native kinesin-5, mini-tetramers require tail domains to initiate microtubule crosslinking. Although mini-tetramers are highly strained in initially aligning microtubules, they slide microtubules more efficiently than native kinesin-5, due to their decreased minifilament flexibility. Our studies reveal that the conserved kinesin-5 motor-tail mediated clustering and the length of the tetrameric minifilament are key features for sliding motility and are critical in organizing microtubules during mitotic spindle assembly and elongation.


2021 ◽  
Author(s):  
Margarida Dantas ◽  
Andreia Oliveira ◽  
Paulo Aguiar ◽  
Helder Maiato ◽  
Jorge G. Ferreira

As cells prepare to divide, they must ensure that enough space is available to assemble the mitotic machinery without perturbing tissue homeostasis. To do so, cells undergo a series of biochemical reactions regulated by cyclin B1-CDK1 that trigger the reorganization of the actomyosin cytoskeleton and ensure the coordination of cytoplasmic and nuclear events. Along with the biochemical events that control mitotic entry, mechanical forces have recently emerged as important players in the regulation of cell cycle events. However, the exact link between mechanical forces and the biochemical events that control mitotic progression remains to be established. Here, we identify a mechanical signal on the nucleus that sets the time for nuclear envelope permeabilization and mitotic entry. This signal relies on nuclear unfolding during the G2-M transition, which activates the stretch-sensitive cPLA2 on the nuclear envelope. This activation upregulates actomyosin contractility, determining the spatiotemporal translocation of cyclin B1 in the nucleus. Our data demonstrate how the mechanosensitive behaviour of cyclin B1 ensures timely and efficient mitotic spindle assembly and prevents chromosomal instability.


2021 ◽  
Author(s):  
Angela Flavia Serpico ◽  
Francesco Febbraro ◽  
Caterina Pisauro ◽  
Domenico Grieco

During cell division, dramatic microtubular rearrangements driven by cyclin B-cdk1 (Cdk1) kinase activity mark mitosis onset leading to interphase cytoskeleton dissolution and mitotic spindle assembly. Once activated by Cdc25, that reverses inhibitory phosphorylation operated by Wee1/Myt1, Cdk1 clears the cytoplasm from microtubules by inhibiting microtubule associated proteins (MAPs) with microtubule growth-promoting properties. Nevertheless, some of these MAPs are required for spindle assembly, creating quite a conundrum. We show here that a Cdk1 fraction bound to spindle structures escaped Cdc25 action and remained inhibited by phosphorylation (i-Cdk1) in mitotic human cells. Loss or restoration of i-Cdk1 inhibited or promoted spindle assembly, respectively. Furthermore, polymerizing spindle microtubules fostered i-Cdk1 by aggregating with Wee1 and excluding Cdc25. Our data reveal that spindle assembly relies on compartimentalized control of Cdk1 activity.


2021 ◽  
Author(s):  
Allison N. Beachum ◽  
Taylor D. Hinnant ◽  
Anna E. Williams ◽  
Amanda M. Powell ◽  
Elizabeth T. Ables

ABSTRACTGerm cells undergo mitotic expansion via incomplete cytokinesis, forming cysts of undifferentiated cells that remain interconnected prior to meiotic initiation, through mechanisms that are not well-defined. In somatic cells, Ras-related nuclear protein (Ran) spatiotemporally regulates mitotic spindle assembly, cleavage furrow formation and abscission. Here, we identify Ran and β-importins as critical regulators of cyst development in the Drosophila ovary. Depletion of Ran or the β-importins Tnpo-SR and cadmus disrupts oocyte selection and results in egg chambers with variable numbers of germ cells, suggesting abnormal cyst development and cyst fragmentation. We demonstrate that Ran, Tnpo-SR, and Cadmus regulate key cellular processes during cyst formation, including cell cycle dynamics, fusome biogenesis, and ring canal stability, yet do so independently of mitotic spindle assembly. Further, Tnpo-SR and Cadmus control cyclin accumulation and suppress cytokinesis independent of Ran-GTP, suggesting that β-importins sequester protein cargos that normally promote the mitotic-to-meiotic transition. Our data demonstrates that Ran and β-importins are critical for germ cell cyst formation, a role that is likely conserved in other organisms.SUMMARY STATEMENTRan and two β-importins function coordinately to promote oocyte selection and cyst development in the Drosophila ovary.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Kimberly K. Fong ◽  
Trisha N. Davis ◽  
Charles L. Asbury

To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment.


Sign in / Sign up

Export Citation Format

Share Document