scholarly journals A THERMODYNAMIC ANALYSIS OF MITOTIC SPINDLE EQUILIBRIUM AT ACTIVE METAPHASE

1973 ◽  
Vol 57 (1) ◽  
pp. 133-147 ◽  
Author(s):  
R. E. Stephens

The mitotic apparatus of first-division metaphase eggs of the sea urchin Strongylocentrotus drobachiensis was observed by means of polarization microscopy under controlled temperature conditions. Eggs were fertilized and grown at two temperature extremes in order to produce two different sizes of available spindle pool. Slow division time allowed successive samples of such cells to be observed at the same point in metaphase but at different equilibrium temperatures, yielding curves of metaphase equilibrium birefringence vs. observational temperature. Using the plateau value of birefringence at higher temperatures as a measure of total available spindle pool and the observed birefringence at lower temperatures as a measure of polymerized material at equilibrium, the spindle protein association was evaluated according to the method of Inoué. Both pool conditions produced linear van't Hoff functions. Analysis of these functions yielded enthalpy and entropy changes of +55–65 kcal/mol and +197–233 entropy units (eu), respectively. These values for active mitotic metaphase are quite comparable to those obtained by Inoué and co-workers for arrested meiotic metaphase cells. When other equilibrium treatments were considered, the best fit to the experimental data was still that of Inoué, a treatment which theoretically involves first-order polymerization and dissociation kinetics. Treatment of metaphase cells with D2O by direct immersion drove the equilibrium to completion regardless of temperature, attaining or exceeding a birefringence value equal to the cell's characteristic pool size; perfusion with D2O appeared to erase the original temperature-determined pool size differences for the two growth conditions, attaining a maximum value characteristic of the larger pool condition. These data confirm Inoué's earlier contention that D2O treatment can modify the available spindle pool.

ChemCatChem ◽  
2021 ◽  
Author(s):  
Xueting Wang ◽  
Lin Chen ◽  
Peter N. R. Vennestrøm ◽  
Ton V. W. Janssens ◽  
Jonas Jansson ◽  
...  

2000 ◽  
Vol 53 (5) ◽  
pp. 363 ◽  
Author(s):  
Steven Kratsis ◽  
Glenn Hefter ◽  
Peter M. May ◽  
Pal Sipos

The protonation constant (pKa) of SO42–(aq) has been determined at ionic strengths 0.5 M ≤I ≤4.0 M in NaCl and CsCl media at 25˚C by using Raman spectroscopy. These data were used to calculate the association constant of the NaSO4–(aq) ion pair in CsCl media. The results are in excellent agreement with previous values obtained by other techniques. The (pKa) was also measured at I = 4 M in both media at temperatures up to 85˚C and the associated enthalpy and entropy changes were calculated. However, reliable thermodynamic data for the ion-pairing reaction could not be obtained at higher temperatures probably because of competition from CsSO4–(aq).


Sign in / Sign up

Export Citation Format

Share Document