direct measurement
Recently Published Documents





Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 122859
James E. Lee ◽  
Zheng-Hua Li ◽  
Huamin Wang ◽  
Andrew E. Plymale ◽  
Charles G. Doll

2022 ◽  
Vol 120 ◽  
pp. 104280
Xin'ao Wei ◽  
Qiyue Li ◽  
Chunde Ma ◽  
Longjun Dong ◽  
Jing Zheng ◽  

2022 ◽  
Vol 163 (2) ◽  
pp. 63
Taro Matsuo ◽  
Thomas P. Greene ◽  
Mahdi Qezlou ◽  
Simeon Bird ◽  
Kiyotomo Ichiki ◽  

Abstract The direct measurement of the universe’s expansion history and the search for terrestrial planets in habitable zones around solar-type stars require extremely high-precision radial-velocity measures over a decade. This study proposes an approach for enabling high-precision radial-velocity measurements from space. The concept presents a combination of a high-dispersion densified pupil spectrograph and a novel line-of-sight monitor for telescopes. The precision of the radial-velocity measurements is determined by combining the spectrophotometric accuracy and the quality of the absorption lines in the recorded spectrum. Therefore, a highly dispersive densified pupil spectrograph proposed to perform stable spectroscopy can be utilized for high-precision radial-velocity measures. A concept involving the telescope’s line-of-sight monitor is developed to minimize the change of the telescope’s line of sight over a decade. This monitor allows the precise measurement of long-term telescope drift without any significant impact on the Airy disk when the densified pupil spectra are recorded. We analytically derive the uncertainty of the radial-velocity measurements, which is caused by the residual offset of the lines of sight at two epochs. We find that the error could be reduced down to approximately 1 cm s−1, and the precision will be limited by another factor (e.g., wavelength calibration uncertainty). A combination of the high-precision spectrophotometry and the high spectral resolving power could open a new path toward the characterization of nearby non-transiting habitable planet candidates orbiting late-type stars. We present two simple and compact highly dispersed densified pupil spectrograph designs for cosmology and exoplanet sciences.

2022 ◽  
Vol 105 (1) ◽  
Silvânia A. Carvalho ◽  
Guilherme T. C. Cruz ◽  
Wagner F. Balthazar

2022 ◽  
Vol 119 (1) ◽  
pp. e2113690119
Di Jin ◽  
Yongyun Hwang ◽  
Liraz Chai ◽  
Nir Kampf ◽  
Jacob Klein

The viscoelectric effect concerns the increase in viscosity of a polar liquid in an electric field due to its interaction with the dipolar molecules and was first determined for polar organic liquids more than 80 y ago. For the case of water, however, the most common polar liquid, direct measurement of the viscoelectric effect is challenging and has not to date been carried out, despite its importance in a wide range of electrokinetic and flow effects. In consequence, estimates of its magnitude for water vary by more than three orders of magnitude. Here, we measure the viscoelectric effect in water directly using a surface force balance by measuring the dynamic approach of two molecularly smooth surfaces with a controlled, uniform electric field between them across highly purified water. As the water is squeezed out of the gap between the approaching surfaces, viscous damping dominates the approach dynamics; this is modulated by the viscoelectric effect under the uniform transverse electric field across the water, enabling its magnitude to be directly determined as a function of the field. We measured a value for this magnitude, which differs by one and by two orders of magnitude, respectively, from its highest and lowest previously estimated values.

Sign in / Sign up

Export Citation Format

Share Document