scholarly journals Mitochondrial ribosome assembly in Neurospora. Two-dimensional gel electrophoretic analysis of mitochondrial ribosomal proteins.

1979 ◽  
Vol 82 (1) ◽  
pp. 17-31 ◽  
Author(s):  
A M Lambowitz ◽  
R J LaPolla ◽  
R A Collins

Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S-5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].

1982 ◽  
Vol 95 (1) ◽  
pp. 267-277 ◽  
Author(s):  
R J Lapolla ◽  
A M Lambowitz

In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.


1978 ◽  
Vol 175 (1) ◽  
pp. 213-219 ◽  
Author(s):  
T Kruiswijk ◽  
J T de Hey ◽  
R J Planta

Two-dimensional polyacrylamide-gel electrophoretic analysis of yeast ribosomal proteins labelled in vivo with 32PO43- revealed that the proteins S2 and S10 of the 40S ribosomal subunit, and the proteins L9, L30, L44 and L45 of the 60S ribosomal subunit, are phosphorylated in vivo. Most of the phosphate groups appeared to be linked to serine residues. Teh number of phosphate groups per molecule of phosphorylated protein species ranged from 0.01 to 0.79. Since most of the phosphorylated ribosomal proteins appear to associate with the pre-ribosomal particles at a very late stage of ribosome assembly, phosphorylation is more likely to play a role in the functioning of the ribosome than in its assembly.


1975 ◽  
Vol 152 (2) ◽  
pp. 373-378 ◽  
Author(s):  
David P. Leader

1. Conditions are described for the enzymic iodination of ribosomal subunits from rat liver. The reaction is relatively insensitive to broad changes in the concentration of KCl, allowing subunits to be studied under conditions which minimize their dimerization. 2. Mixtures of extracted ribosomal proteins were iodinated with 125I, the proteins separated by two-dimensional gel electrophoresis and the radioactivity in each protein was determined. Thus 19 out of 23 of the proteins of the small subunit and 25 out of 33 of the proteins of the large subunit were labelled. Iodination should therefore be a suitable method for studying the topography of the ribosomal proteins of rat liver. 3. When the intact 40S subunit (rather than the extracted mixture of proteins) was iodinated, 18 of the 19 proteins were still labelled. However five of these were labelled less strongly than before. When the intact 60S subunit was iodinated, 17 of the 25 proteins were still labelled, although six of these were labelled less strongly. 4. These results show that in rat liver most of the ribosomal proteins of both subunits are at least partially at the surface of the particles. They are also consistent with the idea that the proportion of the ribosomal proteins in the interior of the particle may be greater for the 60S subunit than for the 40S subunit.


1979 ◽  
Vol 174 (9) ◽  
pp. 822-830 ◽  
Author(s):  
István Gyurján ◽  
Géza Erdös ◽  
Nadiezda P. Yurina ◽  
Marina S. Turischeva ◽  
Margarita S. Odintsova

Sign in / Sign up

Export Citation Format

Share Document