mitochondrial ribosomes
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 56)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole Kleiber ◽  
Nicolas Lemus-Diaz ◽  
Carina Stiller ◽  
Marleen Heinrichs ◽  
Mandy Mong-Quyen Mai ◽  
...  

AbstractModified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Soyeon Lee ◽  
Dongkeun Park ◽  
Chunghun Lim ◽  
Jae-Ick Kim ◽  
Kyung-Tai Min

Abstract Background The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. Results We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. Conclusion We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Vinh Hoa Pham ◽  
Van Lam Nguyen ◽  
Hye-Eun Jung ◽  
Yong-Soon Cho ◽  
Jae-Gook Shin

Abstract Background Few studies have annotated the whole mitochondrial DNA (mtDNA) genome associated with drug responses in Asian populations. This study aimed to characterize mtDNA genetic profiles, especially the distribution and frequency of well-known genetic biomarkers associated with diseases and drug-induced toxicity in a Korean population. Method Whole mitochondrial genome was sequenced for 118 Korean subjects by using a next-generation sequencing approach. The bioinformatic pipeline was constructed for variant calling, haplogroup classification and annotation of mitochondrial mutation. Results A total of 681 variants was identified among all subjects. The MT-TRNP gene and displacement loop showed the highest numbers of variants (113 and 74 variants, respectively). The m.16189T > C allele, which is known to reduce the mtDNA copy number in human cells was detected in 25.4% of subjects. The variants (m.2706A > G, m.3010A > G, and m.1095T > C), which are associated with drug-induced toxicity, were observed with the frequency of 99.15%, 30.51%, and 0.08%, respectively. The m.2150T > A, a genotype associated with highly disruptive effects on mitochondrial ribosomes, was identified in five subjects. The D and M groups were the most dominant groups with the frequency of 34.74% and 16.1%, respectively. Conclusions Our finding was consistent with Korean Genome Project and well reflected the unique profile of mitochondrial haplogroup distribution. It was the first study to annotate the whole mitochondrial genome with drug-induced toxicity to predict the ADRs event in clinical implementation for Korean subjects. This approach could be extended for further study for validation of the potential ethnic-specific mitochondrial genetic biomarkers in the Korean population.


2022 ◽  
Author(s):  
Yusuke Kimura ◽  
Hironori Saito ◽  
Tatsuya Osaki ◽  
Yasuhiro Ikegami ◽  
Taisei Wakigawa ◽  
...  

Mitochondria possess their own genome that encodes components of oxidative phosphorylation (OXPHOS) complexes, and mitochondrial ribosomes within the organelle translate the mRNAs expressed from mitochondrial genome. Given the differential OXPHOS activity observed in diverse cell types, cell growth conditions, and other circumstances, cellular heterogeneity in mitochondrial translation can be expected. Although individual protein products translated in mitochondria have been monitored, the lack of techniques that address the variation in overall mitochondrial protein synthesis in cell populations poses analytic challenges. Here, we adapted mitochondrial-specific fluorescent noncanonical amino acid tagging (FUNCAT) for use with fluorescence-activated cell sorting (FACS) and developed mito-FUNCAT-FACS. The click chemistry-compatible methionine analog L-homopropargylglycine (HPG) enabled the metabolic labeling of newly synthesized proteins. In the presence of cytosolic translation inhibitors, HPG was selectively incorporated into mitochondrial nascent proteins and conjugated to fluorophores via the click reaction (mito-FUNCAT). The application of in situ mito-FUNCAT to flow cytometry allowed us to disentangle changes in net mitochondrial translation activity from those of the organelle mass and detect variations in mitochondrial translation in cancer cells. Our approach provides a useful methodology for examining mitochondrial protein synthesis in individual cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sven Dennerlein ◽  
Sabine Poerschke ◽  
Silke Oeljeklaus ◽  
Cong Wang ◽  
Ricarda Richter-Dennerlein ◽  
...  

Human mitochondria express a genome that encodes thirteen core subunits of the oxidative phosphorylation system (OXPHOS). These proteins insert into the inner membrane co-translationally. Therefore, mitochondrial ribosomes engage with the OXA1L-insertase and membrane-associated proteins, which support membrane insertion of translation products and early assembly steps into OXPHOS complexes. To identify ribosome-associated biogenesis factors for the OXPHOS system, we purified ribosomes and associated proteins from mitochondria. We identified TMEM223 as a ribosome-associated protein involved in complex IV biogenesis. TMEM223 stimulates the translation of COX1 mRNA and is a constituent of early COX1 assembly intermediates. Moreover, we show that SMIM4 together with C12ORF73 interacts with newly synthesized cytochrome b to support initial steps of complex III biogenesis in complex with UQCC1 and UQCC2. Our analyses define the interactome of the human mitochondrial ribosome and reveal novel assembly factors for complex III and IV biogenesis that link early assembly stages to the translation machinery.


2021 ◽  
Vol 10 (12) ◽  
pp. e381101219864
Author(s):  
Gabriel Henrique Queiroz Oliveira ◽  
Guilherme Marinho Sampaio ◽  
Hadassa Fonsêca Silva ◽  
Douglas José Abreu da Silva Cristovam ◽  
Rodolfo Scavuzzi Carneiro Cunha ◽  
...  

Objective: to accomplish a literature review to research the clinical characteristics of azythromycin, and its indications and associations for SARS-CoV-2 infections.  Methodology: Electronic searches were carried out on PUBMED Central, BVS/BIREME, Web of Science and The Cochrane Library with the aid of key-words. Results: Azithromycin is a secure antibiotic belonging to the macrolide class, effective for a vast number of infections, especially respiratory diseases. It seems to have viral indirect activity due to its being capable of altering the cell machinery, including mitochondrias, for changing the normal functioning of mitochondrial ribosomes. Conclusion: It is uncertain whether azithromycin is eligible for the treatment of virus infections in general and especially for COVID-19. Its combination with hydroxychloroquine, however, should be better researched in order to answer if it can be applied as a clinical approach for this matter.


2021 ◽  
pp. mbc.E20-07-0457
Author(s):  
Yash Verma ◽  
Upasana Mehra ◽  
Dharmendra Kumar Pandey ◽  
Joy Kar ◽  
Xochitl Pérez-Martinez ◽  
...  

The synthesis of Cox1, the conserved catalytic-core subunit of Complex IV, a multi-subunit machinery of the mitochondrial oxidative phosphorylation (OXPHOS) system under environmental stress is not sufficiently addressed. In this study, we show that the putative YihA superfamily GTPase, Mrx8 is a bonafide mitochondrial protein required for Cox1 translation initiation and elongation during suboptimal growth condition at 16°C. Mrx8 was found in a complex with mitochondrial ribosomes, consistent with a role in protein synthesis. Cells expressing mutant Mrx8 predicted to be defective in guanine nucleotide binding and hydrolysis were compromised for robust cellular respiration. We show that requirement of Pet309 and Mss51 for cellular respiration is not bypassed by overexpression of Mrx8 and vice versa. Consistently the ribosomal association of Mss51 is independent of Mrx8. Significantly, we find that GTPBP8, the human orthologue, complements the loss of cellular respiration in Δmrx8 cells and GTPBP8 localizes to the mitochondria in mammalian cells. This strongly suggest a universal role of MRX8 family of proteins in regulating mitochondrial function.


2021 ◽  
Vol 8 ◽  
Author(s):  
I.V. Chicherin ◽  
S.V. Dukhalin ◽  
R.A. Khannanov ◽  
M.V. Baleva ◽  
S.A. Levitskii ◽  
...  

Mitochondria are energy producing organelles of the eukaryotic cell, involved in the synthesis of key metabolites, calcium homeostasis and apoptosis. Protein biosynthesis in these organelles is a relic of its endosymbiotic origin. While mitochondrial translational factors have homologues among prokaryotes, they possess a number of unique traits. Remarkably as many as four mammalian mitochondrial proteins possess a clear similarity with translation termination factors. The review focuses on the ICT1, which combines several functions. It is a non-canonical termination factor for protein biosynthesis, a rescue factor for stalled mitochondrial ribosomes, a structural protein and a regulator of proliferation, cell cycle, and apoptosis. Such a diversity of roles demonstrates the high functionality of mitochondrial translation associated proteins and their relationship with numerous processes occurring in a living cell.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

AbstractRibosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tea Lenarčič ◽  
Mateusz Jaskolowski ◽  
Marc Leibundgut ◽  
Alain Scaiola ◽  
Tanja Schönhut ◽  
...  

AbstractMitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors. We discover that the NSUN4-MTERF4 dimer plays a critical role in the process by stabilizing the 16S rRNA in a conformation that exposes the functionally important regions of rRNA for modification by the MRM2 methyltransferase and quality control interactions with the conserved mitochondrial GTPase MTG2 that contacts the sarcin-ricin loop and the immature active site. The successive action of these factors leads to the formation of the peptidyl transferase active site of the mitoribosome and the folding of the surrounding rRNA regions responsible for interactions with tRNAs and the small ribosomal subunit.


Sign in / Sign up

Export Citation Format

Share Document