Statistical mechanics of light elements at high pressure. V Three-dimensional Thomas-Fermi-Dirac theory

1983 ◽  
Vol 272 ◽  
pp. 301 ◽  
Author(s):  
J. J. Macfarlane ◽  
W. B. Hubbard

1973 ◽  
Vol 181 ◽  
pp. 1031 ◽  
Author(s):  
Wayne L. Slattery ◽  
W. B. Hubbard








2002 ◽  
Vol 58 (3) ◽  
pp. 457-462 ◽  
Author(s):  
F. Liebau ◽  
H. Küppers

To compare densities of inorganic high-pressure phases their molal volumes or specific gravities are usually employed, whereas for zeolites and other microporous materials the so-called framework density, FD, is applied. The definition of FD, which refers only to phases with three-dimensional tetrahedron frameworks, is extended to a `generalized framework density' d f, which is independent of the dimensionality of the framework and the coordination number(s) of the framework cations. In this paper the anion packing density, d ap, is introduced as a new quantity which is not only applicable to any inorganic phase but, in contrast to FD and d f, also allows quantitative comparisons to be made for crystalline inorganic phases of any kind. The anion packing density can readily be calculated if the volume and content of the unit cell and the radii of the anions of a phase are known. From d ap values calculated for high-pressure silica polymorphs studied under very high pressure, it is concluded that Shannon–Prewitt effective ionic radii do not sufficiently take into account the compressibility of the anions.



Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.



Sign in / Sign up

Export Citation Format

Share Document