scholarly journals High-energy Gamma Rays from Ultra–high-energy Cosmic-Ray Protons in Gamma-Ray Bursts

1998 ◽  
Vol 499 (2) ◽  
pp. L131-L134 ◽  
Author(s):  
Markus Böttcher ◽  
Charles D. Dermer
1986 ◽  
Vol 6 (3) ◽  
pp. 335-338 ◽  
Author(s):  
D. Ciampa ◽  
R. W. Clay ◽  
C. L. Corani ◽  
P. G. Edwards ◽  
J. R. Patterson

AbstractThe Buckland Park air shower array is being developed particularly for use as an ultra-high-energy gamma ray astronomy telescope. The properties of this instrument are described with an emphasis on improvements being made to its angular resolution. Some early data are presented to illustrate the way in which the data obtained will be used.


1982 ◽  
Vol 83 (1-2) ◽  
pp. 279-286 ◽  
Author(s):  
R. W. Clay ◽  
P. R. Gerhardy ◽  
A. G. Gregory

Author(s):  
Paula M Chadwick

Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Koji Noda ◽  
Robert Daniel Parsons

Gamma-ray bursts (GRBs) are some of the most energetic events in the Universe and are potential sites of cosmic ray acceleration up to the highest energies. GRBs have therefore been a target of interest for very high energy gamma-ray observatories for many years, leading to the recent discovery of a number of bursts with photons reaching energies above 100 GeV. We summarize the GRB observational campaigns of the current generation of very high energy gamma-ray observatories as well as describing the observations and properties of the GRBs discovered so far. We compare the properties of the very high energy bursts to the total GRB distribution and make predictions for the next generation of very high energy gamma-ray observations.


1989 ◽  
Vol 8 (2) ◽  
pp. 159-160 ◽  
Author(s):  
D. J. Bird ◽  
R. W. Clay ◽  
P. G. Edwards

AbstractThe extreme isotropy of cosmic ray events allows one to put upper limits on any possible non-isotropic contribution to the flux. In particular, one can investigate any excess of events which may be confined to the galactic plane. Such extra events would be expected from galactic ultra-high-energy (UHE) gamma-ray sources. Under the assumption of an isotropic cosmic ray flux, recent Buckland Park data place a 95% confidence level limit on the total southern hemisphere (declination −15° to −55°) flux of UHE gamma-rays at between 0.6 and 6 equivalent Cygnus X-3 sources, depending on assumptions concerning the gamma-ray spectrum.


1998 ◽  
Vol 188 ◽  
pp. 459-460
Author(s):  
R. Shibata ◽  
T. Murakami ◽  
Y. Ueda ◽  
A. Yoshida ◽  
F. Tokanai ◽  
...  

We made a search of quiescent X-ray counterparts of two Gamma-Ray Bursts (GRBs), GRB930131 and GRB940217. These GRBs were detected with BATSE, EGRET, COMPTEL on board CGRO together with the GRB detector on Ulysses spacecraft, then they were localized in small error regions. These observations showed that the bursts were remarkably bright accompanying delayed high energy gamma-rays. ASCA observations have found a single X-ray source for each GRB on the possible location determined with the above instruments.


2010 ◽  
Author(s):  
S. Inoue ◽  
R. Salvaterra ◽  
T. R. Choudhury ◽  
A. Ferrara ◽  
B. Ciardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document