galactic sources
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yang Chen ◽  
Xiao Zhang

Abstract In the gamma-ray sky, the highest fluxes come from Galactic sources: supernova remnants (SNRs), pulsars and pulsar wind nebulae, star forming regions, binaries and micro-quasars, giant molecular clouds, Galactic center, and the large extended area around the Galactic plane. The radiation mechanisms of -ray emission and the physics of the emitting particles, such as the origin, acceleration, and propagation, are of very high astrophysical significance. A variety of theoretical models have been suggested for the relevant physics and emission with energies E_1014 eV are expected to be crucial in testing them. In particular, this energy band is a direct window to test at which maximum energy a particle can be accelerated in the Galactic sources and whether the most probable source candidates such as Galactic center and SNRs are “PeVatrons”. Designed aiming at the very high energy (VHE, >100 GeV) observation, LHAASO will be a very powerful instrument in these astrophysical studies. Over the past decade, great advances have been made in the VHE -ray astronomy. More than 170 VHE -ray sources have been observed, and among them, 42 Galactic sources fall in the LHAASO field-of-view. With a sensitivity of 10 milli-Crab, LHAASO can not only provide accurate spectrum for the known -ray sources, but also search new TeV -ray sources. In the following sub-sections, the observation of all the Galactic sources with LHAASO will be discussed in details.


2021 ◽  
Vol 922 (1) ◽  
pp. 43
Author(s):  
D. C. Good ◽  
B. C. Andersen ◽  
P. Chawla ◽  
K. Crowter ◽  
F. Q. Dong ◽  
...  

Abstract We report the discovery of seven new Galactic pulsars with the Canadian Hydrogen Intensity Mapping Experiment’s Fast Radio Burst (CHIME/FRB) backend. These sources were first identified via single pulses in CHIME/FRB, then followed up with CHIME/Pulsar. Four sources appear to be rotating radio transients, pulsar-like sources with occasional single-pulse emission with an underlying periodicity. Of those four sources, three have detected periods ranging from 220 ms to 2.726 s. Three sources have more persistent but still intermittent emission and are likely intermittent or nulling pulsars. We have determined phase-coherent timing solutions for the latter two. These seven sources are the first discovery of previously unknown Galactic sources with CHIME/FRB and highlight the potential of fast radio burst detection instruments to search for intermittent Galactic radio sources.


Nature ◽  
2021 ◽  
Author(s):  
Zhen Cao ◽  
F. A. Aharonian ◽  
Q. An ◽  
Axikegu ◽  
L. X. Bai ◽  
...  

2021 ◽  
Author(s):  
Viviana Niro ◽  
Andrii Neronov ◽  
Luigi Antonio Fusco ◽  
Stefano Gabici ◽  
Dmitri Semikoz
Keyword(s):  

Author(s):  
J. C. Tello ◽  
A. J. Castro-Tirado ◽  
J. Gorosabel ◽  
D. Perez-Ramirez ◽  
S. Guziy ◽  
...  
Keyword(s):  

Author(s):  
J. C. Tello ◽  
A. J. Castro-Tirado ◽  
J. Gorosabel ◽  
D. Perez-Ramirez ◽  
S. Guziy ◽  
...  
Keyword(s):  

2020 ◽  
Vol 493 (2) ◽  
pp. 2782-2792
Author(s):  
Eda Gjergo ◽  
Marco Palla ◽  
Francesca Matteucci ◽  
Elena Lacchin ◽  
Andrea Biviano ◽  
...  

ABSTRACT Stacked analyses of galaxy clusters at low-to-intermediate redshift show signatures attributable to dust, but the origin of this dust is uncertain. We test the hypothesis that the bulk of cluster dust derives from galaxy ejecta. To do so, we employ dust abundances obtained from detailed chemical evolution models of galaxies. We integrate the dust abundances over cluster luminosity functions (one-slope and two-slope Schechter functions). We consider both a hierarchical scenario of galaxy formation and an independent evolution of the three main galactic morphologies: elliptical/S0, spiral and irregular. We separate the dust residing within galaxies from the dust ejected in the intracluster medium. To the latter, we apply thermal sputtering. The model results are compared to low-to-intermediate redshift observations of dust masses. We find that in any of the considered scenarios, elliptical/S0 galaxies contribute negligibly to the present-time intracluster dust, despite producing the majority of gas-phase metals in galaxy clusters. Spiral galaxies, instead, provide both the bulk of the spatially unresolved dust and of the dust ejected into the intracluster medium. The total dust-to-gas mass ratio in galaxy clusters amounts to 10−4, while the intracluster medium dust-to-gas mass ratio amounts to 10−6 at most. These dust abundances are consistent with the estimates of cluster observations at 0.2 < z < 1. We propose that galactic sources, spiral galaxies in particular, are the major contributors to the cluster dust budget.


Sign in / Sign up

Export Citation Format

Share Document