On the phase transitions for the large polaron in a magnetic field

1985 ◽  
Vol 18 (9) ◽  
pp. 1817-1826 ◽  
Author(s):  
Y Lepine
2005 ◽  
Vol 159 ◽  
pp. 241-245 ◽  
Author(s):  
Masashi Fujisawa ◽  
Budhy Kurniawan ◽  
Toshio Ono ◽  
Hidekazu Tanaka

2021 ◽  
pp. 1-10
Author(s):  
Akai Murtazaev ◽  
Magomedzagir Badiev ◽  
Magomedsheykh Ramazanov ◽  
Magomed Magomedov

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Haibiao Zhou ◽  
Qiyuan Feng ◽  
Yubin Hou ◽  
Masao Nakamura ◽  
Yoshinori Tokura ◽  
...  

AbstractThe CE phase is an extraordinary phase exhibiting the simultaneous spin, charge, and orbital ordering due to strong electron correlation. It is an ideal platform to investigate the role of the multiple orderings in the phase transitions and discover emergent properties. Here, we use a cryogenic high-field magnetic force microscope to image the phase transitions and properties of the CE phase in a Pr0.5Ca0.5MnO3 thin film. In a high magnetic field, we observed a clear suppression of magnetic susceptibility at the charge-ordering insulator transition temperature (TCOI), whereas, at the Néel temperature (TN), no significant change is observed. This observation favors the scenario of strong antiferromagnetic correlation developed below TCOI but raises questions about the Zener polaron paramagnetic phase picture. Besides, we discoverd a phase-separated surface state in the CE phase regime. Ferromagnetic phase domains residing at the surface already exist in zero magnetic field and show ultra-high magnetic anisotropy. Our results provide microscopic insights into the unconventional spin- and charge-ordering transitions and revealed essential attributes of the CE phase, highlighting unusual behaviors when multiple electronic orderings are involved.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
D. Morachis Galindo ◽  
F. Rojas ◽  
Jesús A. Maytorena

2001 ◽  
Author(s):  
V. P. Dyakonov ◽  
I. Fita ◽  
E. Zubov ◽  
V. Pashchenko ◽  
V. Mikhaylov ◽  
...  

2016 ◽  
Vol 845 ◽  
pp. 158-161
Author(s):  
S.J. Lamekhov ◽  
Dmitry A. Kuzmin ◽  
Igor V. Bychkov ◽  
I.A. Maltsev ◽  
V.G. Shavrov

Behavior of quasi-one-dimensional multiferoic Ca3CoMnO6 in external magnetic field was investigated. Modelling by Monte Carlo method was performed to show influence of external magnetic field on appearance of polarization and temperature of phase transition in electric subsystem. Magnetization, polarization and energy components for magnetic and electric subsystems dependencies were achieved for different values of external magnetic field. Modelling showed that periodic potential in form of Frenkel-Kontorova makes influence on maximal values and temperature of phase transitions for magnetization and polarization.


Sign in / Sign up

Export Citation Format

Share Document