orbital ordering
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 49)

H-INDEX

65
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 695
Author(s):  
Alessandra Geddo Lehmann ◽  
Giuseppe Muscas ◽  
Maurizio Ferretti ◽  
Emanuela Pusceddu ◽  
Davide Peddis ◽  
...  

We investigated the structural and magnetic properties of 20 nm-sized nanoparticles of the half-doped manganite Ho0.5Ca0.5MnO3 prepared by sol-gel approach. Neutron powder diffraction patterns show Pbnm orthorhombic symmetry for 10 K < T < 290 K, with lattice parameters a, b, and c in the relationship c/√2 < a < b, indicating a cooperative Jahn–Teller effect, i.e., orbital ordering OO, from below room temperature. In contrast with the bulk samples, in the interval 250 < T < 300 K, the fingerprint of charge ordering (CO) does not manifest itself in the temperature dependence of lattice parameters. However, there are signs of CO in the temperature dependence of magnetization. Accordingly, below 100 K superlattice magnetic Bragg reflections arise, which are consistent with an antiferromagnetic phase strictly related to the bulk Mn ordering of a charge exchange-type (CE-type), but characterized by an increased fraction of ferromagnetic couplings between manganese species themselves. Our results show that in this narrow band half-doped manganite, size reduction only modifies the balance between the Anderson superexchange and Zener double exchange interactions, without destabilizing an overall very robust antiferromagnetic state.


2021 ◽  
Author(s):  
Min-Cheol Lee ◽  
Connor Occhialini ◽  
Jiarui Li ◽  
Zhihai Zhu ◽  
Nicholas Sirica ◽  
...  

Abstract We used femtosecond optical spectroscopy to study ultrafast spin and orbital ordering dynamics in the antiferromagnetic Mott insulator α-Sr2CrO4. This chromate system possesses multiple spin and orbital ordered phases, and therefore could enable us to study the unique interplay between these collective phases through their non-equilibrium response to photoexcitation. Here, by varying the pump photon energy, we selectively drove inter-site spin hopping between neighboring Cr t2g orbitals and charge transfer-type transitions between oxygen 2p and Cr eg orbitals. The resulting transient reflectivity dynamics revealed temperature-dependent anomalies across the Neel temperature for spin ordering as well as the transition temperatures linked to different types of orbital order. Our results reveal distinct relaxation timescales for spin and orbital orders in α-Sr2CrO4 and provide experimental evidence for the phase transition at TO, possibly related to antiferro-type orbital ordering.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012035
Author(s):  
Dinesh Uthra ◽  
M P Sharma

Abstract In this paper, we present the investigations of Electron Paramagnetic Resonance (EPR) on Mn site substituted Pr based Doped rare Earth Manganites i.e. Pr0.60Ca0.40MnO3 and Pr0.60Ca0.40Mn0.85Zn0.15O3. Changes in physical properties as lattice parameters, average valence of Mn site was observable of those manganites. X-ray diffraction pattern shows that both Pr0.60Ca0.40MnO3 and Pr0.60Ca0.40Mn0.85Zn0.15O3 have single phase and without the other secondary or impurity phase and indexed supported the Pbnm space group. The value of x in Pr0.60Ca0.40Mn1-xZnxO3 increases, the average valence V was increased except for a fixed composition, i.e. x remains unchanged, the average valence V was decreased as we go from less valency to high valency (i.e., from divalent to trivalent and from trivalent to tetravalent. The EDXS analysis of those materials shows good homogeneity, but there are experimental errors in composition. It is seen from the SEM images that is formed in different shape grains. The average grain sizes of the samples are different for Pr0.60Ca0.40MnO3 and Pr0.06Ca0.40Mn0.85Zn0.15O3 The paramagnetic resonance spectra parameters (effective g-factor, peak-to-peak line width) of Pr0.60Ca0.40MnO3 and Pr0.60Ca0.40Mn0.85Zn0.15O3.have been used to study the paramagnetic spin correlations and spin dynamics. As for Pr0.60Ca0.40MnO3 the line width becomes wider because of the contribution of small polaron jumping within the PM mechanism. However, as for Pr0.60Ca0.40Mn0.85Zn0.15O3 the broadening of EPR line-width is understood with the spin-lattice relaxation mechanism, g value decreased from 1.99 to 1.79. Therefore, the Zn dopant not solely changes the parent spin correlation in the PM regime however additionally suppresses the development of orbital ordering.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5805
Author(s):  
Dmitry V. Karpinsky ◽  
Maxim V. Silibin ◽  
Dmitry V. Zhaludkevich ◽  
Siarhei I. Latushka ◽  
Vadim V. Sikolenko ◽  
...  

The crystal structure of BiMnO3+δ ceramics has been studied as a function of nominal oxygen excess and temperature using synchrotron and neutron powder diffraction, magnetometry and differential scanning calorimetry. Increase in oxygen excess leads to the structural transformations from the monoclinic structure (C2/c) to another monoclinic (P21/c), and then to the orthorhombic (Pnma) structure through the two-phase regions. The sequence of the structural transformations is accompanied by a modification of the orbital ordering followed by its disruption. Modification of the orbital order leads to a rearrangement of the magnetic structure of the compounds from the long-range ferromagnetic to a mixed magnetic state with antiferromagnetic clusters coexistent in a ferromagnetic matrix followed by a frustration of the long-range magnetic order. Temperature increase causes the structural transition to the nonpolar orthorhombic phase regardless of the structural state at room temperature; the orbital order is destroyed in compounds BiMnO3+δ (δ ≤ 0.14) at temperatures above 470 °C.


2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
ABBES LABDELLI ◽  
N. Hamdad

Some ferromagnetic alloys which adopt the perovskite or double-perovskite structure exhibit some remarkable properties, such as electromagnetic effects, charge and orbital ordering, i.e., dielectric and magnetoresistance effects in the same time. These phenomena are related to both electrical conductivity and spin orbit orientation. In order to optimize and explore the structural, magnetic and electronic properties of GdxBa1-xRuO3 alloy, we investigated here the first-principles calculations using the generalized gradient approximation (GGA+U+SO) as implemented in the Wien2K package. The concentration classification of GdxBa1-xRuO3 alloy with (x = 0, 0.125, 0.25, 0.5, 0.875, 1) is given. In this work, we have identified features such transition phases, spin ordered and charge conduction that enable a priori of both crystal structure and magnetic behavior prediction.Our considerable GdxBa1-xRuO3 alloy is a half-metallic in the cubic phase, and, Mott insulator for x=0.875 and semiconductor for x=1 in the orthorhombic phase. The GdxBa1-xRuO3 alloy therefore undergoes a transition between a cubic phase and another orthorhombic at x = 0.5. It is clear that at this point our alloy (Gd0.5Ba0.5RuO3) is at the same time FM and AFM A-type, in another way, we can say that A-AFM and FM configurations coexist in our alloys. In the case of our GdxBa1-xRuO3 alloy, we can see that the total magnetic moment increases linearly with the concentrations "x" since it has passed from 15.99 μB for x = 0 to 39.95 μB for x = 0.5, this is valid in the cubic phase. That is related to a heavily magnetic moment of spin in the Ru atom which increases also linearly with increasing x, while the magnetic moment of Gd decreases slightly. In the orthorhombic phase, its value remains zero regardless of the concentration because we are in an antiferromagnetic (AF) configuration. The collaboration of the 3d-Ru and 2p-O states is suggested to play an important role for the ferromagnetism in the considered alloy. These orbitals were the most regular in the two bands respectively: the conduction band and the valence band in the two phases given here (cubic and orthorhombic). We also note the mixed collaboration of the states 3d-Ba. On the other hand, the contribution of 3d-Gd states was only effective in the band of conduction, at the time when that of the 4f-Gd states was noticed especially in the orthorhombic phase.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Tomomasa Kajita ◽  
Hideki Kuwahara ◽  
Shigeo Mori ◽  
Takuro Katsufuji
Keyword(s):  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Haibiao Zhou ◽  
Qiyuan Feng ◽  
Yubin Hou ◽  
Masao Nakamura ◽  
Yoshinori Tokura ◽  
...  

AbstractThe CE phase is an extraordinary phase exhibiting the simultaneous spin, charge, and orbital ordering due to strong electron correlation. It is an ideal platform to investigate the role of the multiple orderings in the phase transitions and discover emergent properties. Here, we use a cryogenic high-field magnetic force microscope to image the phase transitions and properties of the CE phase in a Pr0.5Ca0.5MnO3 thin film. In a high magnetic field, we observed a clear suppression of magnetic susceptibility at the charge-ordering insulator transition temperature (TCOI), whereas, at the Néel temperature (TN), no significant change is observed. This observation favors the scenario of strong antiferromagnetic correlation developed below TCOI but raises questions about the Zener polaron paramagnetic phase picture. Besides, we discoverd a phase-separated surface state in the CE phase regime. Ferromagnetic phase domains residing at the surface already exist in zero magnetic field and show ultra-high magnetic anisotropy. Our results provide microscopic insights into the unconventional spin- and charge-ordering transitions and revealed essential attributes of the CE phase, highlighting unusual behaviors when multiple electronic orderings are involved.


2021 ◽  
Author(s):  
Litong Jiang ◽  
Kuijuan Jin ◽  
Wenning Ren ◽  
Guozhen Yang

Sign in / Sign up

Export Citation Format

Share Document