Self-focusing and self-defocusing of laser beams in the extra-paraxial region: geometrical optics approximation

1977 ◽  
Vol 10 (17) ◽  
pp. 2363-2368
Author(s):  
V P Nayyar ◽  
N K Verma
2021 ◽  
Author(s):  
V. S. Pawar ◽  
P. P. Nikam ◽  
S. R. Kokare ◽  
S. D. Patil ◽  
M. V. Takale

1965 ◽  
Vol 15 (26) ◽  
pp. 1010-1012 ◽  
Author(s):  
P. Lallemand ◽  
N. Bloembergen

1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Manzoor Ahmad Wani ◽  
Niti Kant

Self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot size. Plasma density ramp plays an important role in reducing the defocusing effect and maintaining the focal spot size up to several Rayleigh lengths. To discuss the nature of self-focusing, the behaviour of beam-width parameters with dimensionless distance of propagation for various values of decentered parameters is examined by numerical estimates. The results are presented graphically and the effect of plasma density ramp and decentered parameter on self-focusing of the beams has been discussed.


2009 ◽  
Vol 47 (5) ◽  
pp. 604-606 ◽  
Author(s):  
S.D. Patil ◽  
S.T. Navare ◽  
M.V. Takale ◽  
M.B. Dongare

1987 ◽  
Vol 30 (5) ◽  
pp. 1521 ◽  
Author(s):  
R. Marchand ◽  
R. Rankin ◽  
C. E. Capjack ◽  
A. Birnboim

Sign in / Sign up

Export Citation Format

Share Document