gaussian laser beam
Recently Published Documents


TOTAL DOCUMENTS

447
(FIVE YEARS 86)

H-INDEX

30
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 591
Author(s):  
Mikhael El-Khoury ◽  
Bogdan Voisiat ◽  
Tim Kunze ◽  
Andrés Fabián Lasagni

Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8% deeper structures with up to 60% higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%.


2021 ◽  
Author(s):  
Gunjan Purohit ◽  
Bineet Gaur ◽  
Pradeep Kothiyal ◽  
Amita Raizada

Abstract This paper presents a scheme for the generation of terahertz (THz) radiation by self-focusing of a cosh-Gaussian laser beam in the magnetized and rippled density plasma, when relativistic nonlinearity is operative. The strong coupling between self-focused laser beam and pre-existing density ripple produces nonlinear current that originates THz radiation. THz radiation is produced by the interaction of the cosh-Gaussian laser beam with electron plasma wave under the appropriate phase matching conditions. Expressions for the beamwidth parameter of cosh-Gaussian laser beam and the electric vector of the THz radiation have been obtained using higher-order paraxial theory and solved numerically. The self-focusing of the cosh-Gaussian laser beam and its effect on the generated THz amplitude have been studied for specific laser and plasma parameters. Numerical study has been performed on various values of the decentered parameter, incident laser intensity, magnetic field, and relative density. The results have also been compared with the paraxial region as well as the Gaussian profile of laser beam. Numerical results suggest that the self-focusing of the cosh-Gaussian laser beam and the amplitude of THz radiation increase in the extended paraxial region compared to the paraxial region. It is also observed that the focusing of the cosh-Gaussian laser beam in the magnetized plasma and the amplitude of the THz radiation increases at higher values of the decentered parameter.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vinay Sharma ◽  
Vishal Thakur ◽  
Arvinder Singh ◽  
Niti Kant

Abstract Present study focuses on self-focusing and its effect on third harmonic generation (THG) of a Gaussian laser beam in plasma under the influence of exponential density ramp. Relativistic nonlinearity has been taken into account which is aroused due the modification of electron’s mass in the presence of high intensity laser. Under strong ponderomotive force, electrons acquire very high quiver velocity and mass variation takes place. Equations for beam width parameter of incident laser and the amplitude of THG have been derived under WKB and paraxial ray approximation, and solved them numerically. It is found that the presence of exponential plasma density ramp results strong self-focusing of laser which further leads to enhance the efficiency of THG. Wiggler magnetic field adds an additional momentum to the photons of third harmonic due to which appreciable gain is observed in the normalized amplitude of THG. Significant enhancement in the THG amplitude has been reported in the presence of exponential density ramp for optimum values of intensity of incident laser, wiggler magnetic field and plasma frequency.


2021 ◽  
Author(s):  
Sandeep Kumar ◽  
Shivani Vij ◽  
Niti Kant ◽  
Vishal Thakur

Abstract We purpose a theoretical analysis for the generation of efficient terahertz (THz) radiation by using the nonlinear interaction of Gaussian laser beam with vertically aligned anharmonic, and rippled carbon nanotubes (CNTs) array. This array of vertically aligned carbon nanotubes (VA-CNTs) is embedded on the base of the dielectric surface. The VA-CNTs have been magnetized by applying a static magnetic field mutually perpendicular to the direction of propagation of the Gaussian beam and length of CNTs. The Gaussian laser beam passing through the CNTs exerts a nonlinear ponderomotive force on the electrons of CNTs and provides them resonant nonlinear transverse velocity. This produces the nonlinear current which is further responsible for the generation of THz radiation. The anharmonicity plays a vital role in the efficient generation of THz radiation. The anharmonicity arises due to the nonlinear variation of restoration force on the various electrons of CNTs. This anharmonicity in the electrons of CNTs helps in broadening the resonance peak. We have observed that externally applied static magnetic field 110 kg to 330 kg) also paves the way for the enhancement of the normalized THz amplitude.


2021 ◽  
Author(s):  
Naveen Gupta ◽  
Sandeep Kumar ◽  
A Gnaneshwaran ◽  
Sanjeev Kumar ◽  
Suman Choudhry

Sign in / Sign up

Export Citation Format

Share Document