Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma

2021 ◽  
Author(s):  
V. S. Pawar ◽  
P. P. Nikam ◽  
S. R. Kokare ◽  
S. D. Patil ◽  
M. V. Takale
1965 ◽  
Vol 15 (26) ◽  
pp. 1010-1012 ◽  
Author(s):  
P. Lallemand ◽  
N. Bloembergen

1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.


Optik ◽  
2019 ◽  
Vol 179 ◽  
pp. 574-578 ◽  
Author(s):  
Vishal Thakur ◽  
Niti Kant

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Manzoor Ahmad Wani ◽  
Niti Kant

Self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot size. Plasma density ramp plays an important role in reducing the defocusing effect and maintaining the focal spot size up to several Rayleigh lengths. To discuss the nature of self-focusing, the behaviour of beam-width parameters with dimensionless distance of propagation for various values of decentered parameters is examined by numerical estimates. The results are presented graphically and the effect of plasma density ramp and decentered parameter on self-focusing of the beams has been discussed.


2009 ◽  
Vol 47 (5) ◽  
pp. 604-606 ◽  
Author(s):  
S.D. Patil ◽  
S.T. Navare ◽  
M.V. Takale ◽  
M.B. Dongare

Wave Motion ◽  
1986 ◽  
Vol 8 (4) ◽  
pp. 341-348 ◽  
Author(s):  
L.Y. Shih

2018 ◽  
Vol 36 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Richa ◽  
Munish Aggarwal ◽  
Harish Kumar ◽  
Ranju Mahajan ◽  
Navdeep Singh Arora ◽  
...  

AbstractIn the present paper, we have investigated self-focusing of the quadruple Gaussian laser beam in underdense cold quantum plasma. The non-linearity chosen is associated with the relativistic mass effect that arises due to quiver motion of electron and electron density perturbation caused by ponderomotive force. The non-linearity modifies the plasma frequency in the dielectric function and hence the refractive index of the medium. The focusing/defocusing of the quadruple laser depends on the refractive index of the medium. We have set up non-linear differential equation that controls the beam width parameter by using well-known paraxial ray approximation and Wentzel–Krammers–Brillouin approximation. The effect of intensity parameter and electron temperature is observed on laser beam self-focusing in the presence of cold quantum plasma. From the results, it is revealed that electron temperature and the initial intensity of the laser beam control the profile dynamics of the laser beam.


Sign in / Sign up

Export Citation Format

Share Document