The energy correction factor of LiF thermoluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and experiments

1996 ◽  
Vol 41 (6) ◽  
pp. 979-993 ◽  
Author(s):  
Paul N Mobit ◽  
Alan E Nahum ◽  
Philip Mayles
2017 ◽  
Author(s):  
David Sarria ◽  
Francois Lebrun ◽  
Pierre-Louis Blelly ◽  
Remi Chipaux ◽  
Philippe Laurent ◽  
...  

Abstract. With a launch expected in 2018, the TARANIS micro-satellite is dedicated to the study of transient phenomena observed in association with thunderstorms. On-board the spacecraft, XGRE and IDEE are two instruments dedicated to study Terrestrial Gamma-ray Flashes (TGFs) and associated electron beams (TEBs). XGRE can detect electrons (energy range: 1 MeV to 10 MeV) and X/gamma-rays (energy range: 20 keV to 10 MeV), with a very high counting capability (about 10 million counts per second), and the ability to discriminate one type of particle from the other. The IDEE instrument is focused on electrons in the 80 keV to 4 MeV energy range, with the ability to estimate their pitch angles. Monte-Carlo simulations of the TARANIS instruments, using a preliminary model of the spacecraft, allow sensitive area estimates for both instruments. It leads to an averaged effective area of 425 cm2 for XGRE to detect X/gamma rays from TGFs, and the combination of XGRE and IDEE gives an average effective area of 255 cm2 to detect electrons/positrons from TEBs. We then compare these performances to RHESSI, AGILE, and Fermi GBM, using performances extracted from literature for the TGF case, and with the help of Monte-Carlo simulations of their mass models for the TEB case. Combining these data with with the help of the MC-PEPTITA Monte-Carlo simulations of TGF propagation in the atmosphere, we build a self-consistent model of the TGF and TEB detection rates of RHESSI, AGILE, and Fermi. It can then be used to estimate that TARANIS should detect about 225 TGFs/year and 25 TEBs/year.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Andrii Sofiienko ◽  
Chad Jarvis ◽  
Ådne Voll

Monte Carlo simulations were used to study photon production in a panoramic X-ray tube with a conical tungsten target to determine the optimal characteristics of the target shape and electron beam configuration. Several simulations were performed for accelerating potentials equal to 250 kV, 300 kV, and 500 kV with electron beams of various radii and anode sizes. The angular distribution of the photon intensity was analysed by numerical calculations for an assembly composed of an X-ray tube and an external collimator with a cylindrical hole to simulate a panoramic scanning system with an X-ray pencil beam.


2016 ◽  
Vol 22 (1) ◽  
pp. 5-9
Author(s):  
Samuel Okon Inyang ◽  
Alan Chamberlain

Abstract The use of a dual electron multileaf collimator (eMLC) to collimate therapeutic electron beam without the use of cutouts has been previously shown to be feasible. Further Monte Carlo simulations were performed in this study to verify the nature and appearance of the isodose distribution in water phantom of irregular electron beams delivered by the eMLC. Electron fields used in this study were selected to reflect those used in electron beam therapy. Results of this study show that the isodose distribution in a water phantom obtained from the simulation of irregular electron beams through the eMLC conforms to the pattern of the eMLC used in the delivery of the beam. It is therefore concluded that the dual eMLC could deliver isodose distributions reflecting the pattern of the eMLC field that was used in the delivery of the beam.


Sign in / Sign up

Export Citation Format

Share Document