Exact (3+1)-Dimensional, 2-Soliton Solutions to the Einstein Gravitational Field Equation

1997 ◽  
Vol 14 (7) ◽  
pp. 492-494 ◽  
Author(s):  
Au Chi ◽  
Tang Meng-xi
2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
John D. Barrow

AbstractWe study the Einstein-aether theory in Weyl integrable geometry. The scalar field which defines the Weyl affine connection is introduced in the gravitational field equation. We end up with an Einstein-aether scalar field model where the interaction between the scalar field and the aether field has a geometric origin. The scalar field plays a significant role in the evolution of the gravitational field equations. We focus our study on the case of homogeneous and isotropic background spacetimes and study their dynamical evolution for various cosmological models.


Author(s):  
Bahram Mashhoon

In extended general relativity (GR), Einstein’s field equation of GR can be expressed in terms of torsion and this leads to the teleparallel equivalent of GR, namely, GR||, which turns out to be the gauge theory of the Abelian group of spacetime translations. The structure of this theory resembles Maxwell’s electrodynamics. We use this analogy and the world function to develop a nonlocal GR|| via the introduction of a causal scalar constitutive kernel. It is possible to express the nonlocal gravitational field equation as modified Einstein’s equation. In this nonlocal gravity (NLG) theory, the gravitational field is local, but satisfies a partial integro-differential field equation. The field equation of NLG can be expressed as Einstein’s field equation with an extra source that has the interpretation of the effective dark matter. It is possible that the kernel of NLG, which is largely undetermined, could be derived from a more general future theory.


Sign in / Sign up

Export Citation Format

Share Document