Nuclear norm regularization with a low-rank constraint for matrix completion

2010 ◽  
Vol 26 (11) ◽  
pp. 115009 ◽  
Author(s):  
Hui Zhang ◽  
Lizhi Cheng ◽  
Wei Zhu
2019 ◽  
Vol 35 (14) ◽  
pp. i455-i463 ◽  
Author(s):  
Mengyun Yang ◽  
Huimin Luo ◽  
Yaohang Li ◽  
Jianxin Wang

Abstract Motivation Computational drug repositioning is a cost-effective strategy to identify novel indications for existing drugs. Drug repositioning is often modeled as a recommendation system problem. Taking advantage of the known drug–disease associations, the objective of the recommendation system is to identify new treatments by filling out the unknown entries in the drug–disease association matrix, which is known as matrix completion. Underpinned by the fact that common molecular pathways contribute to many different diseases, the recommendation system assumes that the underlying latent factors determining drug–disease associations are highly correlated. In other words, the drug–disease matrix to be completed is low-rank. Accordingly, matrix completion algorithms efficiently constructing low-rank drug–disease matrix approximations consistent with known associations can be of immense help in discovering the novel drug–disease associations. Results In this article, we propose to use a bounded nuclear norm regularization (BNNR) method to complete the drug–disease matrix under the low-rank assumption. Instead of strictly fitting the known elements, BNNR is designed to tolerate the noisy drug–drug and disease–disease similarities by incorporating a regularization term to balance the approximation error and the rank properties. Moreover, additional constraints are incorporated into BNNR to ensure that all predicted matrix entry values are within the specific interval. BNNR is carried out on an adjacency matrix of a heterogeneous drug–disease network, which integrates the drug–drug, drug–disease and disease–disease networks. It not only makes full use of available drugs, diseases and their association information, but also is capable of dealing with cold start naturally. Our computational results show that BNNR yields higher drug–disease association prediction accuracy than the current state-of-the-art methods. The most significant gain is in prediction precision measured as the fraction of the positive predictions that are truly positive, which is particularly useful in drug design practice. Cases studies also confirm the accuracy and reliability of BNNR. Availability and implementation The code of BNNR is freely available at https://github.com/BioinformaticsCSU/BNNR. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 68 ◽  
pp. 76-87 ◽  
Author(s):  
Jing Dong ◽  
Zhichao Xue ◽  
Jian Guan ◽  
Zi-Fa Han ◽  
Wenwu Wang

Author(s):  
Andrew D McRae ◽  
Mark A Davenport

Abstract This paper considers the problem of estimating a low-rank matrix from the observation of all or a subset of its entries in the presence of Poisson noise. When we observe all entries, this is a problem of matrix denoising; when we observe only a subset of the entries, this is a problem of matrix completion. In both cases, we exploit an assumption that the underlying matrix is low-rank. Specifically, we analyse several estimators, including a constrained nuclear-norm minimization program, nuclear-norm regularized least squares and a non-convex constrained low-rank optimization problem. We show that for all three estimators, with high probability, we have an upper error bound (in the Frobenius norm error metric) that depends on the matrix rank, the fraction of the elements observed and the maximal row and column sums of the true matrix. We furthermore show that the above results are minimax optimal (within a universal constant) in classes of matrices with low-rank and bounded row and column sums. We also extend these results to handle the case of matrix multinomial denoising and completion.


2013 ◽  
Vol 35 (9) ◽  
pp. 2117-2130 ◽  
Author(s):  
Yao Hu ◽  
Debing Zhang ◽  
Jieping Ye ◽  
Xuelong Li ◽  
Xiaofei He

2011 ◽  
Vol 39 (5) ◽  
pp. 2302-2329 ◽  
Author(s):  
Vladimir Koltchinskii ◽  
Karim Lounici ◽  
Alexandre B. Tsybakov

Sign in / Sign up

Export Citation Format

Share Document