recommendation system
Recently Published Documents


TOTAL DOCUMENTS

4591
(FIVE YEARS 2910)

H-INDEX

46
(FIVE YEARS 20)

2022 ◽  
Vol 24 (3) ◽  
pp. 1-18
Author(s):  
Neeru Dubey ◽  
Amit Arjun Verma ◽  
Simran Setia ◽  
S. R. S. Iyengar

The size of Wikipedia grows exponentially every year, due to which users face the problem of information overload. We purpose a remedy to this problem by developing a recommendation system for Wikipedia articles. The proposed technique automatically generates a personalized synopsis of the article that a user aims to read next. We develop a tool, called PerSummRe, which learns the reading preferences of a user through a vision-based analysis of his/her past reads. We use an ensemble non-invasive eye gaze tracking technique to analyze user’s reading pattern. This tool performs user profiling and generates a recommended personalized summary of yet unread Wikipedia article for a user. Experimental results showcase the efficiency of the recommendation technique.


2022 ◽  
Vol 40 (2) ◽  
pp. 1-26
Author(s):  
Chengyuan Zhang ◽  
Yang Wang ◽  
Lei Zhu ◽  
Jiayu Song ◽  
Hongzhi Yin

With the rapid development of online social recommendation system, substantial methods have been proposed. Unlike traditional recommendation system, social recommendation performs by integrating social relationship features, where there are two major challenges, i.e., early summarization and data sparsity. Thus far, they have not been solved effectively. In this article, we propose a novel social recommendation approach, namely Multi-Graph Heterogeneous Interaction Fusion (MG-HIF), to solve these two problems. Our basic idea is to fuse heterogeneous interaction features from multi-graphs, i.e., user–item bipartite graph and social relation network, to improve the vertex representation learning. A meta-path cross-fusion model is proposed to fuse multi-hop heterogeneous interaction features via discrete cross-correlations. Based on that, a social relation GAN is developed to explore latent friendships of each user. We further fuse representations from two graphs by a novel multi-graph information fusion strategy with attention mechanism. To the best of our knowledge, this is the first work to combine meta-path with social relation representation. To evaluate the performance of MG-HIF, we compare MG-HIF with seven states of the art over four benchmark datasets. The experimental results show that MG-HIF achieves better performance.


2022 ◽  
Vol 34 (3) ◽  
pp. 1-21
Author(s):  
Xue Yu

The purpose is to solve the problems of sparse data information, low recommendation precision and recall rate and cold start of the current tourism personalized recommendation system. First, a context based personalized recommendation model (CPRM) is established by using the labeled-LDA (Labeled Latent Dirichlet Allocation) algorithm. The precision and recall of interest point recommendation are improved by mining the context information in unstructured text. Then, the interest point recommendation framework based on convolutional neural network (IPRC) is established. The semantic and emotional information in the comment text is extracted to identify user preferences, and the score of interest points in the target location is predicted combined with the influence factors of geographical location. Finally, real datasets are adopted to evaluate the recommendation precision and recall of the above two models and their performance of solving the cold start problem.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-23
Author(s):  
Liang Wang ◽  
Zhiwen Yu ◽  
Bin Guo ◽  
Dingqi Yang ◽  
Lianbo Ma ◽  
...  

In this article, we propose and study a novel data-driven framework for Targeted Outdoor Advertising Recommendation (TOAR) with a special consideration of user profiles and advertisement topics. Given an advertisement query and a set of outdoor billboards with different spatial locations and rental prices, our goal is to find a subset of billboards, such that the total targeted influence is maximum under a limited budget constraint. To achieve this goal, we are facing two challenges: (1) it is difficult to estimate targeted advertising influence in physical world; (2) due to NP hardness, many common search techniques fail to provide a satisfied solution with an acceptable time, especially for large-scale problem settings. Taking into account the exposure strength, advertisement matching degree, and advertising repetition effect, we first build a targeted influence model that can characterize that the advertising influence spreads along with users mobility. Subsequently, based on a divide-and-conquer strategy, we develop two effective approaches, i.e., a master–slave-based sequential optimization method, TOAR-MSS, and a cooperative co-evolution-based optimization method, TOAR-CC, to solve our studied problem. Extensive experiments on two real-world datasets clearly validate the effectiveness and efficiency of our proposed approaches.


2022 ◽  
Vol 24 (3) ◽  
pp. 1-19
Author(s):  
Sunita Tiwari ◽  
Sushil Kumar ◽  
Vikas Jethwani ◽  
Deepak Kumar ◽  
Vyoma Dadhich

A news recommendation system not only must recommend the latest, trending and personalized news to the users but also give opportunity to know about the people’s opinion on trending news. Most of the existing news recommendation systems focus on recommending news articles based on user-specific tweets. In contrast to these recommendation systems, the proposed Personalized News and Tweet Recommendation System (PNTRS) recommends tweets based on the recommended article. It firstly generates news recommendation based on user’s interest and twitter profile using the Multinomial Naïve Bayes (MNB) classifier. Further, the system uses these recommended articles to recommend various trending tweets using fuzzy inference system. Additionally, feedback-based learning is applied to improve the efficiency of the proposed recommendation system. The user feedback rating is taken to evaluate the satisfaction level and it is 7.9 on the scale of 10.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

The size of Wikipedia grows exponentially every year, due to which users face the problem of information overload. We purpose a remedy to this problem by developing a recommendation system for Wikipedia articles. The proposed technique automatically generates a personalized synopsis of the article that a user aims to read next. We develop a tool, called PerSummRe, which learns the reading preferences of a user through a vision-based analysis of his/her past reads. We use an ensemble non-invasive eye gaze tracking technique to analyze user’s reading pattern. This tool performs user profiling and generates a recommended personalized summary of yet unread Wikipedia article for a user. Experimental results showcase the efficiency of the recommendation technique.


Author(s):  
Amina Ouatiq ◽  
Kamal ElGuemmat ◽  
Khalifa Mansouri ◽  
Mohammed Qbadou

Learners attend their courses in remote or hybrid systems find it difficult to follow one size fits all courses. These difficulties have increased with the pandemic, lockdown, and the stress they cause. Hence, the role of adaptive systems to recommend personalized learning resources according to the learner's profile. The purpose of this paper is to design a system for recommending learning objects according learner's condition, including his mental state, his COVID-19 history, as well as his social situation and ability to connect to the e-learning system on a regular basis. In this article, we present an architecture of a recommendation system for personalized learning objects based on ontologies and on rule-based reasoning, and we will also describe the inference rules required for the adaptation of the educational content to the needs of the learners, taking into account the learner’s health and mental state, as well as his social situation. The system designed, and validated using the unified modeling language (UML). It additionally allows teachers to have a holistic view of learners’ progress and situations.


Author(s):  
Nattaporn Thongsri ◽  
Pattaraporn Warintarawej ◽  
Santi Chotkaew ◽  
Wanida Saetang

Food recommendation system is one of the most interesting recommendation problems since it provides data for decision-making to users on selection of foods that meets individual preference of each user. Personalized recommender system has been used to recommend foods or menus to respond to requirements and restrictions of each user in a better way. This research study aimed to develop a personalized healthy food recommendation system based on collaborative filtering and knapsack method. Assessment results found that users were satisfied with the personalized healthy food recommendation system based on collaborative filtering and knapsack problem algorithm which included ability of operating system, screen design, and efficiency of operating system. The average satisfaction score overall was 4.20 implying that users had an excellent level of satisfaction.


2022 ◽  
Vol 40 (1) ◽  
pp. 1-22
Author(s):  
Amir H. Jadidinejad ◽  
Craig Macdonald ◽  
Iadh Ounis

Recommendation systems are often evaluated based on user’s interactions that were collected from an existing, already deployed recommendation system. In this situation, users only provide feedback on the exposed items and they may not leave feedback on other items since they have not been exposed to them by the deployed system. As a result, the collected feedback dataset that is used to evaluate a new model is influenced by the deployed system, as a form of closed loop feedback. In this article, we show that the typical offline evaluation of recommender systems suffers from the so-called Simpson’s paradox. Simpson’s paradox is the name given to a phenomenon observed when a significant trend appears in several different sub-populations of observational data but disappears or is even reversed when these sub-populations are combined together. Our in-depth experiments based on stratified sampling reveal that a very small minority of items that are frequently exposed by the deployed system plays a confounding factor in the offline evaluation of recommendation systems. In addition, we propose a novel evaluation methodology that takes into account the confounder, i.e., the deployed system’s characteristics. Using the relative comparison of many recommendation models as in the typical offline evaluation of recommender systems, and based on the Kendall rank correlation coefficient, we show that our proposed evaluation methodology exhibits statistically significant improvements of 14% and 40% on the examined open loop datasets (Yahoo! and Coat), respectively, in reflecting the true ranking of systems with an open loop (randomised) evaluation in comparison to the standard evaluation.


Author(s):  
Ulka Khobragade

Abstract: The objective is to find suitable skilled employees for the job among different departments within the organization. For finding the quality of an applicant or even the already employed employee, the HRs of companies goes through a lot of hectic schedule, time consuming processes, decision making, etc. In this case, Recommendation System, which is a part of Machine Learning, proves to be effective in making decisions on behalf of the HRs if an employee or an applicant is suitable enough for the job. The aim of the project is to predict whether the already employed employees, who belong to different department within the organization can perform well or not if assigned to a different department. Keywords: Recommendation system, Collaborative Learning, K-NN, Similarity, Similarity Correlation, Cosine etc.


Sign in / Sign up

Export Citation Format

Share Document