Inverse Problems
Latest Publications


TOTAL DOCUMENTS

4598
(FIVE YEARS 567)

H-INDEX

113
(FIVE YEARS 9)

Published By Iop Publishing

1361-6420, 0266-5611

2022 ◽  
Author(s):  
Satoru Iwasaki

Abstract This paper deals with initial state estimation problems of the heat equation in equilateral metric graphs being admitted to have cycles. Particularly, we are concerned with suitable placements of observation points in order to uniquely determine the initial state from observation data. We give a necessary and sufficient condition for suitable placements of observation points, and such suitable placements are determined from transition matrices of metric graphs. From numerical simulations, we confirm effectiveness of a necessary and sufficient condition.


2022 ◽  
Author(s):  
Yun Chen ◽  
Yao Lu ◽  
Xiangyuan Ma ◽  
Yuesheng Xu

Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting illposed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-point proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the outperformance of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with quadratic regularization on the CAUG, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid.


2022 ◽  
Author(s):  
Sumit Tewari ◽  
Sahar Yousefi ◽  
Andrew G Webb

Abstract We present a combination of a CNN-based encoder with an analytical forward map for solving inverse problems. We call it an encoder-analytic (EA) hybrid model. It does not require a dedicated training dataset and can train itself from the connected forward map in a direct learning fashion. A separate regularization term is not required either, since the forward map also acts as a regularizer. As it is not a generalization model it does not suffer from overfitting. We further show that the model can be customized to either finding a specific target solution or one that follows a given heuristic. As an example, we apply this approach to the design of a multi-element surface magnet for low-field magnetic resonance imaging (MRI). We further show that the EA model can outperform the benchmark genetic algorithm model currently used for magnet design in MRI, obtaining almost 10 times better results.


2022 ◽  
Author(s):  
Chen Xu ◽  
Ye Zhang

Abstract The asymptotic theory for the memory-parameter estimator constructed from the log-regression with wavelets is incomplete for 1/$f$ processes that are not necessarily Gaussian or linear. Having a complete version of this theory is necessary because of the importance of non-Gaussian and non-linear long-memory models in describing financial time series. To bridge this gap, we prove that, under some mild assumptions, a newly designed memory estimator, named LRMW in this paper, is asymptotically consistent. The performances of LRMW in three simulated long-memory processes indicate the efficiency of this new estimator.


2022 ◽  
Author(s):  
Hanne Kekkonen

Abstract We consider the statistical non-linear inverse problem of recovering the absorption term f>0 in the heat equation with given sufficiently smooth functions describing boundary and initial values respectively. The data consists of N discrete noisy point evaluations of the solution u_f. We study the statistical performance of Bayesian nonparametric procedures based on a large class of Gaussian process priors. We show that, as the number of measurements increases, the resulting posterior distributions concentrate around the true parameter generating the data, and derive a convergence rate for the reconstruction error of the associated posterior means. We also consider the optimality of the contraction rates and prove a lower bound for the minimax convergence rate for inferring f from the data, and show that optimal rates can be achieved with truncated Gaussian priors.


2022 ◽  
Author(s):  
Jingni Xiao

Abstract We consider corner scattering for the operator ∇ · γ(x)∇ + k2ρ(x) in R2, with γ a positive definite symmetric matrix and ρ a positive scalar function. A corner is referred to one that is on the boundary of the (compact) support of γ(x) − I or ρ(x) − 1, where I stands for the identity matrix. We assume that γ is a scalar function in a small neighborhood of the corner. We show that any admissible incident field will be scattered by such corners, which are allowed to be concave. Moreover, we provide a brief discussion on the existence of non-scattering waves when γ − I has a jump across the corner. In order to prove the results, we construct a new type of complex geometric optics (CGO) solutions.


2021 ◽  
Vol 38 (2) ◽  
pp. 025005
Author(s):  
Birzhan Ayanbayev ◽  
Ilja Klebanov ◽  
Han Cheng Lie ◽  
T J Sullivan

Abstract The Bayesian solution to a statistical inverse problem can be summarised by a mode of the posterior distribution, i.e. a maximum a posteriori (MAP) estimator. The MAP estimator essentially coincides with the (regularised) variational solution to the inverse problem, seen as minimisation of the Onsager–Machlup (OM) functional of the posterior measure. An open problem in the stability analysis of inverse problems is to establish a relationship between the convergence properties of solutions obtained by the variational approach and by the Bayesian approach. To address this problem, we propose a general convergence theory for modes that is based on the Γ-convergence of OM functionals, and apply this theory to Bayesian inverse problems with Gaussian and edge-preserving Besov priors. Part II of this paper considers more general prior distributions.


2021 ◽  
Vol 38 (2) ◽  
pp. 025006 ◽  
Author(s):  
Birzhan Ayanbayev ◽  
Ilja Klebanov ◽  
Han Cheng Lie ◽  
T J Sullivan

Abstract We derive Onsager–Machlup functionals for countable product measures on weighted ℓ p subspaces of the sequence space R N . Each measure in the product is a shifted and scaled copy of a reference probability measure on R that admits a sufficiently regular Lebesgue density. We study the equicoercivity and Γ-convergence of sequences of Onsager–Machlup functionals associated to convergent sequences of measures within this class. We use these results to establish analogous results for probability measures on separable Banach or Hilbert spaces, including Gaussian, Cauchy, and Besov measures with summability parameter 1 ⩽ p ⩽ 2. Together with part I of this paper, this provides a basis for analysis of the convergence of maximum a posteriori estimators in Bayesian inverse problems and most likely paths in transition path theory.


2021 ◽  
Author(s):  
Hang Xu ◽  
Song Li ◽  
Junhong Lin

Abstract Many problems in data science can be treated as recovering a low-rank matrix from a small number of random linear measurements, possibly corrupted with adversarial noise and dense noise. Recently, a bunch of theories on variants of models have been developed for different noises, but with fewer theories on the adversarial noise. In this paper, we study low-rank matrix recovery problem from linear measurements perturbed by $\ell_1$-bounded noise and sparse noise that can arbitrarily change an adversarially chosen $\omega$-fraction of the measurement vector. For Gaussian measurements with nearly optimal number of measurements, we show that the nuclear-norm constrained least absolute deviation (LAD) can successfully estimate the ground-truth matrix for any $\omega<0.239$. Similar robust recovery results are also established for an iterative hard thresholding algorithm applied to the rank-constrained LAD considering geometrically decaying step-sizes, and the unconstrained LAD based on matrix factorization as well as its subgradient descent solver.


2021 ◽  
Author(s):  
Roman G Novikov ◽  
Vladimir Sivkin

Abstract We give new formulas for finding the complex (phased) scattering amplitude at fixed frequency and angles from absolute values of the scattering wave function at several points $x_1,..., x_m$. In dimension $d\geq 2$, for $m>2$, we significantly improve previous results in the following two respects. First, geometrical constraints on the points needed in previous results are significantly simplified. Essentially, the measurement points $x_j$ are assumed to be on a ray from the origin with fixed distance $\tau=|x_{j+1}- x_j|$, and high order convergence (linearly related to $m$) is achieved as the points move to infinity with fixed $\tau$. Second, our new asymptotic reconstruction formulas are significantly simpler than previous ones. In particular, we continue studies going back to [Novikov, Bull. Sci. Math. 139(8), 923-936, 2015].


Sign in / Sign up

Export Citation Format

Share Document