scholarly journals Weighted truncated nuclear norm regularization for low-rank quaternion matrix completion

Author(s):  
Liqiao Yang ◽  
Kit Ian Kou ◽  
Jifei Miao
2018 ◽  
Vol 68 ◽  
pp. 76-87 ◽  
Author(s):  
Jing Dong ◽  
Zhichao Xue ◽  
Jian Guan ◽  
Zi-Fa Han ◽  
Wenwu Wang

2013 ◽  
Vol 35 (9) ◽  
pp. 2117-2130 ◽  
Author(s):  
Yao Hu ◽  
Debing Zhang ◽  
Jieping Ye ◽  
Xuelong Li ◽  
Xiaofei He

2019 ◽  
Vol 35 (14) ◽  
pp. i455-i463 ◽  
Author(s):  
Mengyun Yang ◽  
Huimin Luo ◽  
Yaohang Li ◽  
Jianxin Wang

Abstract Motivation Computational drug repositioning is a cost-effective strategy to identify novel indications for existing drugs. Drug repositioning is often modeled as a recommendation system problem. Taking advantage of the known drug–disease associations, the objective of the recommendation system is to identify new treatments by filling out the unknown entries in the drug–disease association matrix, which is known as matrix completion. Underpinned by the fact that common molecular pathways contribute to many different diseases, the recommendation system assumes that the underlying latent factors determining drug–disease associations are highly correlated. In other words, the drug–disease matrix to be completed is low-rank. Accordingly, matrix completion algorithms efficiently constructing low-rank drug–disease matrix approximations consistent with known associations can be of immense help in discovering the novel drug–disease associations. Results In this article, we propose to use a bounded nuclear norm regularization (BNNR) method to complete the drug–disease matrix under the low-rank assumption. Instead of strictly fitting the known elements, BNNR is designed to tolerate the noisy drug–drug and disease–disease similarities by incorporating a regularization term to balance the approximation error and the rank properties. Moreover, additional constraints are incorporated into BNNR to ensure that all predicted matrix entry values are within the specific interval. BNNR is carried out on an adjacency matrix of a heterogeneous drug–disease network, which integrates the drug–drug, drug–disease and disease–disease networks. It not only makes full use of available drugs, diseases and their association information, but also is capable of dealing with cold start naturally. Our computational results show that BNNR yields higher drug–disease association prediction accuracy than the current state-of-the-art methods. The most significant gain is in prediction precision measured as the fraction of the positive predictions that are truly positive, which is particularly useful in drug design practice. Cases studies also confirm the accuracy and reliability of BNNR. Availability and implementation The code of BNNR is freely available at https://github.com/BioinformaticsCSU/BNNR. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document