Solution of the Schr dinger equation for time-dependent 1D harmonic oscillators using the orthogonal functions invariant

2003 ◽  
Vol 36 (8) ◽  
pp. 2069-2076 ◽  
Author(s):  
M Fern ndez Guasti ◽  
H Moya-Cessa
2019 ◽  
Vol 1 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Alejandro R. Urzúa ◽  
Irán Ramos-Prieto ◽  
Manuel Fernández-Guasti ◽  
Héctor M. Moya-Cessa

We show that by using the quantum orthogonal functions invariant, we found a solution to coupled time-dependent harmonic oscillators where all the time-dependent frequencies are arbitrary. This system may be found in many applications such as nonlinear and quantum physics, biophysics, molecular chemistry, and cosmology. We solve the time-dependent coupled harmonic oscillators by transforming the Hamiltonian of the interaction using a set of unitary operators. In passing, we show that N time-dependent and coupled oscillators have a generalized orthogonal functions invariant from which we can write a Ermakov–Lewis invariant.


2018 ◽  
Vol 64 (1) ◽  
pp. 30
Author(s):  
Surarit Pepore

The application of the integrals of the motion of a quantum system in deriving Green function or propagator is established. The Greenfunction is shown to be the eigenfunction of the integrals of the motion which described initial points of the system trajectory in the phasespace. The explicit expressions for the Green functions of the damped harmonic oscillator, the harmonic oscillator with strongly pulsatingmass, and the harmonic oscillator with mass growing with time are obtained in co-ordinate representations. The connection between theintegrals of the motion method and other method such as Feynman path integral and Schwinger method are also discussed.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450048 ◽  
Author(s):  
D. X. Macedo ◽  
I. Guedes

In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.


1989 ◽  
Vol 39 (4) ◽  
pp. 1941-1947 ◽  
Author(s):  
Xin Ma ◽  
William Rhodes

Sign in / Sign up

Export Citation Format

Share Document