harmonic oscillator
Recently Published Documents


TOTAL DOCUMENTS

3850
(FIVE YEARS 494)

H-INDEX

79
(FIVE YEARS 7)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xing-Yan Fan ◽  
Wei-Min Shang ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Jing-Ling Chen

As one of the fundamental traits governing the operation of quantum world, the uncertainty relation, from the perspective of Heisenberg, rules the minimum deviation of two incompatible observations for arbitrary quantum states. Notwithstanding, the original measurements appeared in Heisenberg’s principle are strong such that they may disturb the quantum system itself. Hence an intriguing question is raised: What will happen if the mean values are replaced by weak values in Heisenberg’s uncertainty relation? In this work, we investigate the question in the case of measuring position and momentum in a simple harmonic oscillator via designating one of the eigenkets thereof to the pre-selected state. Astonishingly, the original Heisenberg limit is broken for some post-selected states, designed as a superposition of the pre-selected state and another eigenkets of harmonic oscillator. Moreover, if two distinct coherent states reside in the pre- and post-selected states respectively, the variance reaches the lower bound in common uncertainty principle all the while, which is in accord with the circumstance in Heisenberg’s primitive framework.


Author(s):  
A. N. Lavrenov ◽  
I. A. Lavrenov

In this paper, the q-generalization of the Higgs algebra is considered. The realization of this algebra is shown in an explicit form using a nonlinear transformation of the creation-annihilation operators of the q-harmonic oscillator. This transformation is the performance of two operations, namely, a “correction” using a function of the original Hamiltonian, and raising to the fourth power the creation and annihilation operators of a q-harmonic oscillator. The choice of the “correcting” function is justified by the standard form of commutation relations for the operators of the metaplectic realization Uq(SU(1,1)). Further possible directions of research are briefly discussed to summarize the results obtained. The first direction is quite obvious. It is the consideration of the problem when the dimension of the operator space increases or for any value N. The second direction can be associated with the analysis of the relationship between q-generalizations of the Higgs and Hahn algebras.


Author(s):  
Seiji MIZUNO

Abstract We analytically study the Fano resonance in a simple coupled oscillator system. We demonstrate directly from the equation of motion that the resonance profile observed in this system is generally described by the Fano formula with a complex Fano parameter. The analytical expressions are derived for the resonance frequency, resonance width, and Fano parameter, and the conditions under which the Fano parameter becomes a real number are examined. These expressions for the simple system are also expected to be helpful for considering various other physical systems because the Fano resonance is a general wave phenomenon.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marieke MB Hoekstra ◽  
Maxime Jan ◽  
Georgia Katsioudi ◽  
Yann Emmenegger ◽  
Paul Franken

In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modelling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and a SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements.


2021 ◽  
Author(s):  
Armel Azangue Koumetio ◽  
Yiande Deuto Germain ◽  
Alain Giresse Tene ◽  
Martin Tchoffo

Abstract In the present paper, we study the influence of non-commutativity on entanglement in a system of two oscillators-modes in interaction with its environment. The considered system is a two-dimensional harmonic oscillator in non-commuting spatial coordinates coupled to its environment. The dynamics of the covariance matrix, the separability criteria for two Gaussian states in non-commutative space coordinates, and the logarithmic negativity are used to evaluate the quantum entanglement in the system, which is compared to the commutative space coordinates case. The result is applied for two initially entangled states, namely the squeezed vacuum and squeezed thermal states. It can be observed that the phenomenon of entanglement sudden death appears more early in the system for the case of squeezed vacuum state than in the case of squeezed thermal state. Thereafter, it is also observed that non-commutativity effects lead to an increasing of entanglement of initially entangled quantum states, and reduce the separability in the open quantum system. It turns out that a separable state in the usual commutative quantum mechanics might be entangled in non-commutative extension.


Author(s):  
John Klauder

A half-harmonic oscillator, which gets its name because the coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found using affine quantization (AQ). The main purpose of this paper is to compare results of this new quantization procedure with those of canonical quantization (CQ). Using Ashtekar-like classical variables and CQ, we quantize the same toy model. While these two quantizations lead to different results, they both would reduce to the same classical Hamiltonian if $\hbar\rightarrow0$. Since these two quantizations have differing results, only one of the quantizations can be physically correct. Two brief sections illustrate how AQ can correctly help quantum gravity and the quantization of most field theory problems.


Author(s):  
Zs. É. Mihálka ◽  
M. Nooijen ◽  
Á. Margócsy ◽  
Á. Szabados ◽  
P. R. Surján

AbstractWhile the square root of Dirac’s $$\delta$$ δ is not defined in any standard mathematical formalism, postulating its existence with some further assumptions defines a generalized function called $$\gamma (x)$$ γ ( x ) which permits a quasi-classical treatment of simple systems like the H atom or the 1D harmonic oscillator for which accurate quantum mechanical energies were previously reported. The so-defined $$\gamma (x)$$ γ ( x ) is neither a traditional function nor a distribution, and it remains to be seen that any consistent mathematical approaches can be set up to deal with it rigorously. A straightforward use of $$\gamma (x)$$ γ ( x ) generates several paradoxical situations which are collected here. The help of the scientific community is sought to resolve these paradoxa.


Sign in / Sign up

Export Citation Format

Share Document