harmonic oscillators
Recently Published Documents


TOTAL DOCUMENTS

1087
(FIVE YEARS 203)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 4 (1) ◽  
pp. 22-35
Author(s):  
Abhinash Kumar Roy ◽  
Sourabh Magare ◽  
Varun Srivastava ◽  
Prasanta K. Panigrahi

We investigate the dynamical evolution of genuine multipartite correlations for N-qubits in a common reservoir considering a non-dissipative qubits-reservoir model. We derive an exact expression for the time-evolved density matrix by modeling the reservoir as a set of infinite harmonic oscillators with a bilinear form of interaction Hamiltonian. Interestingly, we find that the choice of two-level systems corresponding to an initially correlated multipartite state plays a significant role in potential robustness against environmental decoherence. In particular, the generalized W-class Werner state shows robustness against the decoherence for an equivalent set of qubits, whereas a certain generalized GHZ-class Werner state shows robustness for inequivalent sets of qubits. It is shown that the genuine multipartite concurrence (GMC), a measure of multipartite entanglement of an initially correlated multipartite state, experiences an irreversible decay of correlations in the presence of a thermal reservoir. For the GHZ-class Werner state, the region of mixing parameters for which there exists GMC, shrinks with time and with increase in the temperature of the thermal reservoir. Furthermore, we study the dynamical evolution of the relative entropy of coherence and von-Neumann entropy for the W-class Werner state.


2022 ◽  
Author(s):  
Jen-Hsu Chang ◽  
Chun-Yan Lin ◽  
Ray-Kuang Lee

Abstract We study the eigen-energy and eigen-function of a quantum particle acquiring the probability density-dependent effective mass (DDEM) in harmonic oscillators. Instead of discrete eigen-energies, continuous energy spectra are revealed due to the introduction of a nonlinear effective mass. Analytically, we map this problem into an infinite discrete dynamical system and obtain the stationary solutions in the weak density approximation, along with the proof on the monotonicity in the perturbed eigen-energies. Numerical results not only give agreement to the asymptotic solutions stemmed from the expansion of Hermite-Gaussian functions, but also unveil a family of peakon-like solutions without linear counterparts. As nonlinear Schr ¨odinger wave equation has served as an important model equation in various sub-fields in physics, our proposed generalized quantum harmonic oscillator opens an unexplored area for quantum particles with nonlinear effective masses.


Author(s):  
Igor G. Vladimirov ◽  
Ian R. Petersen ◽  
Matthew R. James

This paper is concerned with exponential moments of integral-of-quadratic functions of quantum processes with canonical commutation relations of position-momentum type. Such quadratic-exponential functionals (QEFs) arise as robust performance criteria in control problems for open quantum harmonic oscillators (OQHOs) driven by bosonic fields. We develop a randomised representation for the QEF using a Karhunen–Loeve expansion of the quantum process on a bounded time interval over the eigenbasis of its two-point commutator kernel, with noncommuting position-momentum pairs as coefficients. This representation holds regardless of a particular quantum state and employs averaging over an auxiliary classical Gaussian random process whose covariance operator is specified by the commutator kernel. This allows the QEF to be related to the moment-generating functional of the quantum process and computed for multipoint Gaussian states. For stationary Gaussian quantum processes, we establish a frequency-domain formula for the QEF rate in terms of the Fourier transform of the quantum covariance kernel in composition with trigonometric functions. A differential equation is obtained for the QEF rate with respect to the risk sensitivity parameter for its approximation and numerical computation. The QEF is also applied to large deviations and worst-case mean square cost bounds for OQHOs in the presence of statistical uncertainty with a quantum relative entropy description.


2021 ◽  
pp. 1-32
Author(s):  
Tsuyoshi Kato ◽  
Daisuke Kishimoto ◽  
Mitsunobu Tsutaya

Given a countable metric space, we can consider its end. Then a basis of a Hilbert space indexed by the metric space defines an end of the Hilbert space, which is a new notion and different from an end as a metric space. Such an indexed basis also defines unitary operators of finite propagation, and these operators preserve an end of a Hilbert space. Then, we can define a Hilbert bundle with end, which lightens up new structures of Hilbert bundles. In a special case, we can define characteristic classes of Hilbert bundles with ends, which are new invariants of Hilbert bundles. We show Hilbert bundles with ends appear in natural contexts. First, we generalize the pushforward of a vector bundle along a finite covering to an infinite covering, which is a Hilbert bundle with end under a mild condition. Then we compute characteristic classes of some pushforwards along infinite coverings. Next, we will show the spectral decompositions of nice differential operators give rise to Hilbert bundles with ends, which elucidate new features of spectral decompositions. The spectral decompositions we will consider are the Fourier transform and the harmonic oscillators.


2021 ◽  
Vol 3 (6) ◽  
pp. 66-75
Author(s):  
Ioannis Haranas ◽  
Ioannis Gkigkitzis ◽  
Kristin Cobbett ◽  
Ryan Gauthier

According to Landauer’s principle, the energy of a particle may be used to record or erase N number of information bits within the thermal bath. The maximum number of information N recorded by the particle in the heat bath is found to be inversely proportional to its temperature T. If at least one bit of information is transferred from the particle to the medium, then the particle might exchange information with the medium. Therefore for at least one bit of information, the limiting mass that can carry or transform information assuming a temperature T= 2.73 K is equal to m = 4.718´10-40 kg which is many orders of magnitude smaller that the masse of most of today’s elementary particles. Next, using the corresponding temperature of a graviton relic and assuming at least one bit of information the corresponding graviton mass is calculated and from that, a relation for the number of information N carried by a graviton as a function of the graviton mass mgr is derived. Furthermore, the range of information number contained in a graviton is also calculated for the given range of graviton mass as given by Nieto and Goldhaber, from which we find that the range of the graviton is inversely proportional to the information number N. Finally, treating the gravitons as harmonic oscillators in an enclosure of size R we derive the range of a graviton as a function of the cosmological parameters in the present era.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jeong Ryeol Choi ◽  
Salah Menouar

We investigate quantum features of three coupled dissipative nano-optomechanical oscillators. The Hamiltonian of the system is somewhat complicated due not only to the coupling of the optomechanical oscillators but to the dissipation in the system as well. In order to simplify the problem, a spatial unitary transformation approach and a matrix-diagonalization method are used. From such procedures, the Hamiltonian is eventually diagonalized. In other words, the complicated original Hamiltonian is transformed to a simple one which is associated to three independent simple harmonic oscillators. By utilizing such a simplification of the Hamiltonian, complete solutions (wave functions) of the Schrödinger equation for the optomechanical system are obtained. We confirm that the probability density converges to the origin of the coordinate in a symmetric manner as the optomechanical energy dissipates. The wave functions that we have derived can be used as a basic tool for evaluating diverse quantum consequences of the system, such as quadrature fluctuations, entanglement entropy, energy evolution, transition probability, and the Wigner function.


2021 ◽  
Vol 23 (12) ◽  
pp. 123020
Author(s):  
Zhongkai Huang ◽  
Alejandro D Somoza ◽  
Cheng Peng ◽  
Jin Huang ◽  
Maolin Bo ◽  
...  

Abstract Recent developments in qubit engineering make circuit quantum electrodynamics devices promising candidates for the study of Bloch oscillations (BOs) and Landau–Zener (LZ) transitions. In this work, a hybrid circuit chain with alternating site energies under external electric fields is employed to study Bloch–Zener oscillations (BZOs), i.e. coherent superpositions of BOs and LZ transitions. We couple each of the tunable qubits in the chain to dispersionless optical phonons and build an extended Holstein polaron model with the purpose of investigating vibronic effects in the BZOs. We employ an extension of the Davydov ansatz in combination with the Dirac–Frenkel time-dependent variational principle to simulate the dynamics of the qubit chain under the influence of high-frequency quantum harmonic oscillators. Band gaps emerge due to energy differences in site energies at alternating qubit sites, and are shown to play key roles in tuning band structures and time periodic reconstructions of the wave patterns. In the absence of qubit–phonon interactions, the qubits undergo either standard BZOs or breathing modes, depending on whether the initial wave packet is formed by a broad or narrow Gaussian wave packet, respectively. The BZOs can get localized in space if the band gaps are sufficiently large. In the presence of qubit–phonon coupling, the periodic behavior of BZOs can be washed out and undergo dynamic localization. The influence of an ohmic bath on the dynamics of BZOs is investigated by means of a Markovian master equation approach. Finally, we calculate the von Neumann entropy as a measure of the entanglement between qubits and phonons.


Sign in / Sign up

Export Citation Format

Share Document