scholarly journals Neutrino masses in the lepton number violating MSSM

2006 ◽  
Vol 2006 (08) ◽  
pp. 005-005 ◽  
Author(s):  
Athanasios Dedes ◽  
Steven Rimmer ◽  
Janusz Rosiek
2008 ◽  
Author(s):  
Steve C. H. Kom ◽  
Pyungwon Ko ◽  
Deog Ki Hong

1999 ◽  
Vol 14 (06) ◽  
pp. 433-445 ◽  
Author(s):  
HIROYUKI NISHIURA ◽  
KOUICHI MATSUDA ◽  
TAKESHI FUKUYAMA

We discuss the constraints of lepton mixing angles from lepton number violating processes such as neutrinoless double beta decay, μ--e+ conversion and K decay, K-→π+μ-μ- which are allowed only if neutrinos are Majorana particles. The rates of these processes are proportional to the averaged neutrino mass defined by [Formula: see text] in the absence of right-handed weak coupling. Here a, b(j) are flavor(mass) eigenstates and Uaj is the left-handed lepton mixing matrix. We give general conditions imposed on <mν>ab in terms of mi, lepton mixing angles and CP violating phases (three phases in Majorana neutrinos). These conditions are reduced to the constraints among mi, lepton mixing angles and <mν>ab which are irrelevant to the concrete values of CP phases. Given a <mν>ab experimentally, these conditions constrain mi and the lepton mixing angles. Though these constraints are still loose except for neutrinoless double beta decay, they will become helpful through rapid improvements of experiments. By using these constraints we also derive the limits on averaged neutrino masses for μ--e+ conversion and K decay, K-→π+μ-μ-, respectively. We also present the bounds for CP phases in terms of mi, mixing angles and <mν>ab.


2019 ◽  
Vol 100 (7) ◽  
Author(s):  
André de Gouvêa ◽  
Wei-Chih Huang ◽  
Johannes König ◽  
Manibrata Sen

2007 ◽  
Vol 76 (7) ◽  
Author(s):  
Biswarup Mukhopadhyaya ◽  
Soumitra SenGupta ◽  
Raghavendra Srikanth

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Michael Gustafsson ◽  
José Miguel No ◽  
Maximiliano A. Rivera

Abstract We investigate neutrino mass generation scenarios where the lepton number breaking new physics does not interact with Standard Model (SM) quarks and couples only to the SM right-handed charged lepton chirality. The lowest-order lepton number violating effective operator which describes this framework is a unique dimension nine operator involving SM gauge fields, $$ {\mathcal{O}}_9 $$ O 9 . We find that there are two possible classes of new physics scenarios giving rise to this $$ {\mathcal{O}}_9 $$ O 9 operator. In these scenarios neutrino masses are induced radiatively via dark matter interactions, linking the dark matter to a natural explanation for the smallness of neutrino masses compared to the electroweak scale. We discuss the phenomenology and existing constraints in the different neutrino mass models within each class. In particular, we analyze the important interplay between neutrino mixing and neutrinoless double β-decay in order to predict characteristic signatures and disfavour certain scenarios.


Sign in / Sign up

Export Citation Format

Share Document