left handed
Recently Published Documents


TOTAL DOCUMENTS

4829
(FIVE YEARS 553)

H-INDEX

110
(FIVE YEARS 8)

2022 ◽  
Vol 8 (1) ◽  
pp. 257-262
Author(s):  
Vionita Putri ◽  
Elda Irma Jeanne Joice Kawulur ◽  
Febriza Dwiranti ◽  
Sabarita Sinuraya ◽  
Sita Ratnawati

Human has a preference to use their hands for various manual activities. Left-handed preference is people who tend to use their left hand to perform various manual activities, while right-handed people tend to use right-handed. Any researches show that the left-handed preference for more creativity was influenced by the dominant use of the right brain and bigger corpus callosum. The research aims to determine the percentage of left-handed preference and their creativity in Universitas Papua, Manokwari Papua Barat. The method used in this research is the descriptive method. Data collection used a questionnaire to evaluate individual hand preference using Handedness Questionnaire and to determine individual creativity using Adjective Check List. The percentage of left-handed people in UNIPA were 9.3% or lower than right-handed and higher than ambidextrous. Our study supports the statement about selection in handedness in the traditional society which showed a higher percentage of left-hander as advantages related to using hand intensively.  The percentage of left-handed males and females was almost equal and strongly left-handed was higher in females. The percentage of creative people was higher in left-handed, especially in males


2022 ◽  
Vol 23 (2) ◽  
pp. 768
Author(s):  
Martin Bartas ◽  
Kristyna Slychko ◽  
Václav Brázda ◽  
Jiří Červeň ◽  
Christopher A. Beaudoin ◽  
...  

Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.


2022 ◽  
Vol 8 ◽  
Author(s):  
Meize Li ◽  
Yahong Liu ◽  
Lianlian Du ◽  
Xin Zhou ◽  
Kun Song ◽  
...  

Topological material has been widely studied in recent years because of excellent physical properties. In this paper, a Weyl topological material composed of the double left-handed helixes is presented. It is demonstrated that the proposed structure possesses a two-dimensional complete topological nontrivial bandgap for a fixed kz in the microwave frequency, and the robust surface states are observed. This unique function provides a promising platform for the development of photonics and electromagnetics.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Rigo Bause ◽  
Gudrun Hiller ◽  
Tim Höhne ◽  
Daniel F. Litim ◽  
Tom Steudtner

Abstract$$U(1)^\prime $$ U ( 1 ) ′ extensions of the standard model with generation-dependent couplings to quarks and leptons are investigated as an explanation of anomalies in rare B-decays, with an emphasis on stability and predictivity up to the Planck scale. To these ends, we introduce three generations of vector-like standard model singlet fermions, an enlarged, flavorful scalar sector, and, possibly, right-handed neutrinos, all suitably charged under the $$U(1)^\prime $$ U ( 1 ) ′ gauge interaction. We identify several gauge-anomaly free benchmarks consistent with $$B_s$$ B s -mixing constraints, with hints for electron-muon universality violation, and the global $$b \rightarrow s$$ b → s fit. We further investigate the complete two-loop running of gauge, Yukawa and quartic couplings up to the Planck scale to constrain low-energy parameters and enhance the predictive power. A characteristic of models is that the $$Z^\prime $$ Z ′ with TeV-ish mass predominantly decays to invisibles, i.e. new fermions or neutrinos. $$Z^\prime $$ Z ′ -production can be studied at a future muon collider. While benchmarks feature predominantly left-handed couplings $$C_9^{\mu }$$ C 9 μ and $$C_{10}^{\mu }$$ C 10 μ , right-handed ones can be accommodated as well.


Author(s):  
Juan Arturo Gomez Barroso ◽  
Mariana Reneé Miranda ◽  
Claudio Alejandro Pereira ◽  
Richard Charles Garratt ◽  
Carlos Fernando Aguilar

Trypanosoma cruzi is a flagellated protozoan parasite that causes Chagas disease, which represents a serious health problem in the Americas. Nucleoside diphosphate kinases (NDPKs) are key enzymes that are implicated in cellular energy management. TcNDPK1 is the canonical isoform in the T. cruzi parasite. TcNDPK1 has a cytosolic, perinuclear and nuclear distribution. It is also found in non-membrane-bound filaments adjacent to the nucleus. In the present work, X-ray diffraction and in vivo studies of TcNDPK1 are described. The structure reveals a novel, multi-hexameric, left-handed helical oligomer structure. The results of directed mutagenesis studies led to the conclusion that the microscopic TcNDPK1 granules observed in vivo in T. cruzi parasites are made up by the association of TcNDPK1 oligomers. In the absence of experimental data, analysis of the interactions in the X-ray structure of the TcNDPK1 oligomer suggests the probable assembly and disassembly steps: dimerization, assembly of the hexamer as a trimer of dimers, hexamer association to generate the left-handed helical oligomer structure and finally oligomer association in a parallel manner to form the microscopic TcNDPK1 filaments that are observed in vivo in T. cruzi parasites. Oligomer disassembly takes place on the binding of substrate in the active site of TcNDPK1, leading to dissociation of the hexamers. This study constitutes the first report of such a protein arrangement, which has never previously been seen for any protein or NDPK. Further studies are needed to determine its physiological role. However, it may suggest a paradigm for protein storage reflecting the complex mechanism of action of TcNDPK1.


2021 ◽  
pp. 875647932110642
Author(s):  
Gretchen Bailess

Ectrodactyly, also known as split hand/split foot malformation, is a rare congenital disease defined as the absence or underdevelopment of the central digits with a median cleft of the hand or foot. It can be an isolated sonographic finding or associated with a syndrome. This case study describes isolated left-handed ectrodactyly diagnosed sonographically at 20 weeks gestation, during a routine anatomy sonogram. The patient had no family history of this condition, which demonstrates the importance of sonography for early diagnosis, counseling, and genetic testing options.


2021 ◽  
Author(s):  
Chuan Jiang ◽  
Biao Lu ◽  
Wei Zhang ◽  
Yoel P. Ohayon ◽  
Feiyang Feng ◽  
...  

The overwinding and underwinding of duplex segments between junctions have been used in designing both left-handed and right-handed DNA origami nanostructures. For a variety of DNA tubes obtained from self-assembled tiles, only a theoretical approach of the intrinsic curvature of the DNA tile (specified as the intrinsic tile curvature) has been previously used to explain their formation. Details regarding the quantitative and structural descriptions of the tile curvature and its evolution in DNA tubes by the coupling of the twist of the inter-tile arm (specified as the arm twist) have never been addressed. In this work, we designed three types of tile cores built around a circular 128 nucleotide scaffold by using longitudinal weaving (LW), bridged longitudinal weaving (bLW) and transverse weaving (TW). Joining the tiles with inter-tile arms having the length of an odd number of DNA half-turns (termed O-tiling) almost resulted into planar 2D lattices, whereas joining the tiles with the arms having the length of an even number of DNA half-turns (termed E-tiling) nearly generated tubes. Streptavidin bound to biotin was used as a labeling technique to characterize the inside and outside surfaces of the E-tiling tubes and thereby the conformations of their component tiles with addressable concave and convex curvatures. When the arms have the normal winding at the relaxed B-form of DNA, the intrinsic tile curvature deter-mines the chirality of the E-tiling tubes. By regulating the arm length and the sticky end length of the bLW-Ep/q (E-tiling of the bLW cores with the arm length of p-bp and the sticky end length of q-nt) assemblies, the arm can be overwound, resulting in a left-handed twist, and can also be underwound, resulting in a right-handed twist. Chiral bLW-Ep/q tubes with either a right-handed curvature or a left-handed curvature can also be formed by the coupling of the intrinsic tile curvature and the arm twist. We were able to assign the chiral indices (n,m) to each tube using high-resolution AFM images, and therefore were able to estimate the tile curvature using a regular polygon model that approximated the transverse section of the tube. A deeper understanding of the integrated actions of dif-ferent types of twisting forces on the DNA tubes will be extremely helpful in engineering more elaborate DNA nanostructures in the future.


2021 ◽  
Author(s):  
Saeed Roschdi ◽  
Jenny Yan ◽  
Yuichiro Nomura ◽  
Cristian A Escobar ◽  
Riley J Petersen ◽  
...  

The addition of poly(UG) ("pUG") repeats to 3' termini of mRNAs drives gene silencing and trans-generational epigenetic inheritance in the metazoan C. elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA Polymerase (RdRP) that synthesizes small interfering (si)RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4)2 structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. Its biological importance is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific N7-deaza RNA substitutions that do not adopt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA secondary structure motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in non-coding regions of human RNAs, suggesting the fold likely has biological roles beyond gene silencing.


2021 ◽  
Vol 57 (2) ◽  
pp. 173-184
Author(s):  
Petr Benda ◽  
Tereza Nováková ◽  
Lenka Žáková

Aims. The aim of this study was to clarify whether volleyball and handball players, as representatives of the so-called overhead athletes, already have an increased ROM and specific local hypermobility in the shoulder joints in the junior categories. These changes are described by goniometric measurements and hypermobility tests according to Sachse and Beighton. The results are examined with respect to gender and sport specialization. Methods. Ninety-five subjects without previous shoulder joint injury aged 16 to 19 years, including 73 volleyball and handball players, were tested. The cohort included 33 men, 40 women, 34 handball players and 39 volleyball players. The control group consisted of 22 participants, including 11 men and 11 women. The majority (90.5%) of the study participants were right-hand dominant. Only 9.5% of the participants were left-handed. Measurements were taken with a goniometer with digital display and hypermobility tests according to Sachse and Beighton. Results. In a selected group of volleyball and handball players, the ROM of the shoulder joints of the dominant arm was significantly greater in three ways: into extension, horizontal adduction and external rotation. On the other hand, the ROM of their shoulder joints in internal rotation is smaller and the research group has significant hypermobility in the glenohumeral (scapulohumeral) joint compared to the control group. Our study showed that females compared to males playing volleyball and handball have a significantly higher degree of internal rotation of both dominant and non-dominant arms. No significant differences were found when comparing volleyball and handball players. The difference in ROM between the dominant and non-dominant arms of volleyball and handball players was shown in extension and external rotation.


Sign in / Sign up

Export Citation Format

Share Document