scholarly journals Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Michael Gustafsson ◽  
José Miguel No ◽  
Maximiliano A. Rivera

Abstract We investigate neutrino mass generation scenarios where the lepton number breaking new physics does not interact with Standard Model (SM) quarks and couples only to the SM right-handed charged lepton chirality. The lowest-order lepton number violating effective operator which describes this framework is a unique dimension nine operator involving SM gauge fields, $$ {\mathcal{O}}_9 $$ O 9 . We find that there are two possible classes of new physics scenarios giving rise to this $$ {\mathcal{O}}_9 $$ O 9 operator. In these scenarios neutrino masses are induced radiatively via dark matter interactions, linking the dark matter to a natural explanation for the smallness of neutrino masses compared to the electroweak scale. We discuss the phenomenology and existing constraints in the different neutrino mass models within each class. In particular, we analyze the important interplay between neutrino mixing and neutrinoless double β-decay in order to predict characteristic signatures and disfavour certain scenarios.

2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


2008 ◽  
Vol 23 (10) ◽  
pp. 721-725 ◽  
Author(s):  
ERNEST MA

Adding a second scalar doublet (η+, η0) and three neutral singlet fermions N1, 2, 3 to the Standard Model of particle interactions with a new Z2 symmetry, it has been shown that [Formula: see text] or [Formula: see text] is a good dark-matter candidate and seesaw neutrino masses are generated radiatively. A supersymmetric U(1) gauge extension of this new idea is proposed, which enforces the usual R-parity of the Minimal Supersymmetric Standard Model, and allows this new Z2 symmetry to emerge as a discrete remnant.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Ernest Ma ◽  
Diego Restrepo ◽  
Óscar Zapata

The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
P. V. Dong ◽  
V. T. N. Huyen ◽  
H. N. Long ◽  
H. V. Thuy

The mixing among gauge bosons in the 3-3-1 models with the discrete symmetries is investigated. To get tribimaximal neutrino mixing, we have to introduce sextets containing neutral scalar components with lepton numberL=1,2. Assignation of VEVs to these fields leads to the mixing of the new gauge bosons and those in the standard model. The mixing in the charged gauge bosons leads to the lepton number violating interactions of theWboson. The same situation happens in the neutral gauge boson sector.


2011 ◽  
Vol 26 (06) ◽  
pp. 995-1009 ◽  
Author(s):  
H. HIGASHI ◽  
T. ISHIMA ◽  
D. SUEMATSU

Radiative neutrino mass models have interesting features, which make it possible to relate neutrino masses to the existence of dark matter. However, the explanation of the baryon number asymmetry in the universe seems to be generally difficult as long as we suppose leptogenesis based on the decay of thermal right-handed neutrinos. Since right-handed neutrinos are assumed to have masses of O(1) TeV in these models, they are too small to generate the sufficient lepton number asymmetry. Here we consider Affleck–Dine leptogenesis in a radiative neutrino mass model by using a famous flat direction LHu as an alternative possibility. The constraint on the reheating temperature could be weaker than the ordinary models. The model explains all the origin of the neutrino masses, the dark matter, and also the baryon number asymmetry in the universe.


Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Ernest Ma

Abstract In the context of $$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_\chi $$SU(3)C×SU(2)L×U(1)Y×U(1)χ, where $$U(1)_\chi $$U(1)χ comes from $$SO(10) \rightarrow SU(5) \times U(1)_\chi $$SO(10)→SU(5)×U(1)χ, supplemented by the non-Abelian discrete $$\Delta (27)$$Δ(27) symmetry for three lepton families, Dirac neutrino masses and their mixing are radiatively generated through dark matter. The gauge $$U(1)_\chi $$U(1)χ symmetry is broken spontaneously. The discrete $$\Delta (27)$$Δ(27) symmetry is broken softly and spontaneously. Together, they result in two residual symmetries, a global $$U(1)_L$$U(1)L lepton number and a dark symmetry, which may be $$Z_2$$Z2, $$Z_3$$Z3, or $$U(1)_D$$U(1)D depending on what scalar breaks $$U(1)_\chi $$U(1)χ. Cobimaximal neutrino mixing, i.e. $$\theta _{13} \ne 0$$θ13≠0, $$\theta _{23} = \pi /4$$θ23=π/4, and $$\delta _{CP} = \pm \pi /2$$δCP=±π/2, may also be obtained.


2002 ◽  
Vol 17 (13) ◽  
pp. 771-778 ◽  
Author(s):  
SALAH NASRI ◽  
SHERIF MOUSSA

We propose a model for neutrino mass generation in which no physics beyond a TeV is required. We extend the standard model by adding two charged singlet fields with lepton number two. Dirac neutrino masses mνD ≤ MeV are generated at the one-loop level. Small left-handed Majorana neutrino masses can be generated via the seesaw mechanism with right-handed neutrino masses MR of order TeV scale.


2016 ◽  
Vol 31 (25) ◽  
pp. 1650142 ◽  
Author(s):  
Guillermo Palacio

We study the neutrino mass generation in the [Formula: see text] electroweak extension of the Standard Model by considering nonrenormalizable dimension 5 effective operators. It is shown that there exist two topologies for the realizations of such an operator at the tree-level and for one of the three-family models the neutrino phenomenology is explored after extending its particle content with an [Formula: see text] fermion singlet and a scalar decuplet. Constraints in the available parameters space of the model are partially discussed.


2007 ◽  
Vol 76 (7) ◽  
Author(s):  
Biswarup Mukhopadhyaya ◽  
Soumitra SenGupta ◽  
Raghavendra Srikanth

Sign in / Sign up

Export Citation Format

Share Document