scholarly journals Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes

2017 ◽  
Vol 35 (1) ◽  
pp. 014002 ◽  
Author(s):  
Abhirup Ghosh ◽  
Nathan K Johnson-McDaniel ◽  
Archisman Ghosh ◽  
Chandra Kant Mishra ◽  
Parameswaran Ajith ◽  
...  
2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Peter T. H. Pang ◽  
Juan Calderón Bustillo ◽  
Yifan Wang ◽  
Tjonnie G. F. Li

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Stephen Privitera ◽  
Satyanarayan R. P. Mohapatra ◽  
Parameswaran Ajith ◽  
Kipp Cannon ◽  
Nickolas Fotopoulos ◽  
...  

2016 ◽  
Vol 116 (13) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
M. R. Abernathy ◽  
F. Acernese ◽  
...  

Author(s):  
Nils Andersson

This chapter introduces the different classes of compact objects—white dwarfs, neutron stars, and black holes—that are relevant for gravitational-wave astronomy. The ideas are placed in the context of developing an understanding of the likely endpoint(s) of stellar evolution. Key ideas like Fermi gases and the Chandrasekhar mass are discussed, as is the emergence of general relativity as a cornerstone of astrophysics in the 1950s. Issues associated with different formation channels for, in particular, black holes are considered. The chapter ends with a discussion of the supermassive black holes that are found at the centre of galaxies.


2017 ◽  
Vol 95 (6) ◽  
Author(s):  
Salvatore Vitale ◽  
Ryan Lynch ◽  
Vivien Raymond ◽  
Riccardo Sturani ◽  
John Veitch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document