star clusters
Recently Published Documents


TOTAL DOCUMENTS

2307
(FIVE YEARS 302)

H-INDEX

97
(FIVE YEARS 17)

10.1142/p764 ◽  
2022 ◽  
Author(s):  
Simon Goodwin ◽  
Nate Bastian

2022 ◽  
Author(s):  
Kimberly Anne Engle
Keyword(s):  

Physics Today ◽  
2022 ◽  
Vol 2022 (1) ◽  
pp. 0103a
Keyword(s):  

2022 ◽  
Vol 258 (1) ◽  
pp. 10
Author(s):  
Janice C. Lee ◽  
Bradley C. Whitmore ◽  
David A. Thilker ◽  
Sinan Deger ◽  
Kirsten L. Larson ◽  
...  

Abstract The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV–U–B–V–I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V- and I-band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μm imaging has been approved.


2022 ◽  
Vol 924 (2) ◽  
pp. 77
Author(s):  
Raymond G. Carlberg ◽  
Laura C. Keating

Abstract A cosmological zoom-in simulation that develops into a Milky Way-like halo begins at redshift 7. The initial dark matter distribution is seeded with dense star clusters of median mass 5 × 105 M ⊙, placed in the largest subhalos present, which have a median peak circular velocity of 25 km s−1. Three simulations are initialized using the same dark matter distribution with the star clusters starting on approximately circular orbits having initial median radii 6.8, 0.14 kpc, and, at the exact center of the subhalos. The simulations are evolved to the current epoch at which time the median galactic orbital radii of the three sets of clusters are 30, 5, and 16 kpc, with the clusters losing about 2%, 50%, and 15% of their mass, respectively. Clusters beginning at small orbital radii have so much tidal forcing that they are often not in equilibrium. Clusters that start at larger subhalo radii have a velocity dispersion that declines smoothly to ≃20% of the central value at ≃20 half-mass radii. The clusters that begin in the subhalo centers can show a rise in velocity dispersion beyond 3–5 half-mass radii. That is, the clusters that form without local dark matter always have stellar-mass-dominated kinematics at all radii, whereas about 25% of the clusters that begin in subhalo centers have remnant local dark matter.


Author(s):  
Xin Ji ◽  
Chengyuan Li ◽  
Licai Deng

Abstract Many evidence show that the Multiple Population (MP) features ex- ist not only in the old Galactic globular clusters but also in the intermediate-age clusters in the Megallanic Clouds (MCs), which are characterized by star-to-star abundance scatter of several elements, including Helium (He). The photometric properties of the red giant branch bump (RGBB) are proved to be related to the variation in helium abundances of the member stars of the star clusters. We use the “Modules for Experiments in Stellar Astrophysics” (MESA) stellar evolution code to calculate the evolution sequences of stars along the red giant branch with changing helium content. Following the RGB sequences, we then generate a lu- minosity function of the RGB stars within the grid of input helium abundances, which are compared with the observational data of an intermediate-age MC cluster NGC 1978. The result of the current study reveals that the star to star helium abundance variation is 0.03.


2021 ◽  
Vol 163 (1) ◽  
pp. 16
Author(s):  
Caitlin Moeller ◽  
Daniela Calzetti

Abstract We combine archival images for the nearby galaxy M33 (Triangulum Galaxy) from the ultraviolet (UV) to the infrared to derive ages, masses, and extinctions for the young star cluster population, and compare our physical parameters with published ones. Our goal is to test the robustness of clusters ages and masses, and possibly improve on existing ones both by expanding the wavelength range of the spectral-energy distribution (SED) fits and by using more recent population synthesis models. The rationale for this experiment is to verify the sensitivity of the clusters physical parameters to observational setups and model choices that span those commonly found in the literature. We derive the physical parameters of 137 clusters, using SEDs measured in eight UV-to-I bands, including Hα, from GALEX and ground-based images. We also add the 24 μm image from the Spitzer Space Telescope to help break some age degeneracies. We find that our derived cluster ages show significant differences with earlier determinations, while the masses remain relatively insensitive to the fitting approach adopted. We also highlight an already known difficulty in recovering old, low-extinction clusters, as SED-fitting codes tend to prefer younger, higher extinction solutions when the extinction is a free parameter. We publish updated ages, masses, and extinctions, with uncertainties for all sample star clusters, together with their photometry. Given the proximity of M33, this represents an important population to secure for the study of star formation and cluster evolution in spirals.


Author(s):  
K. Fahrion ◽  
R. Leaman ◽  
M. Lyubenova ◽  
G. van de Ven

2021 ◽  
Vol 923 (2) ◽  
pp. 278
Author(s):  
S. T. Linden ◽  
A. S. Evans ◽  
K. Larson ◽  
G. C. Privon ◽  
L. Armus ◽  
...  

Abstract We present the results of a Hubble Space Telescope WFC3 near-UV and Advanced Camera for Surveys Wide Field Channel optical study into the star cluster populations of a sample of 10 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages, masses, and extinctions for a total of 1027 star clusters in galaxies with d L < 110 Mpc in order to avoid issues related to cluster bending. The measured cluster age distribution slope of dN / d τ ∝ τ − 0.5 + / − 0.12 is steeper than what has been observed in lower-luminosity star-forming galaxies. Further, differences in the slope of the observed cluster age distribution between inner- ( dN / d τ ∝ τ − 1.07 + / − 0.12 ) and outer-disk ( dN / d τ ∝ τ − 0.37 + / − 0.09 ) star clusters provide evidence of mass-dependent cluster destruction in the central regions of LIRGs driven primarily by the combined effect of strong tidal shocks and encounters with massive giant molecular clouds. Excluding the nuclear ring surrounding the Seyfert 1 nucleus in NGC 7469, the derived cluster mass function (CMF; dN / dM ∝ M α ) offers marginal evidence for a truncation in the power law at M t ∼ 2×106 M ⊙ for our three most cluster-rich sources, which are all classified as early stage mergers. Finally, we find evidence of a flattening of the CMF slope of dN / dM ∝ M − 1.42 ± 0.1 for clusters in late-stage mergers relative to early stage (α = −1.65 ± 0.02), which we attribute to an increase in the formation of massive clusters over the course of the interaction.


2021 ◽  
Vol 923 (2) ◽  
pp. 283
Author(s):  
Francesca Pinna ◽  
Nadine Neumayer ◽  
Anil Seth ◽  
Eric Emsellem ◽  
Dieu D. Nguyen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document