scholarly journals Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method

2018 ◽  
Vol 97 (4) ◽  
Author(s):  
Jeroen Meidam ◽  
Ka Wa Tsang ◽  
Janna Goldstein ◽  
Michalis Agathos ◽  
Archisman Ghosh ◽  
...  
2017 ◽  
Vol 35 (1) ◽  
pp. 014002 ◽  
Author(s):  
Abhirup Ghosh ◽  
Nathan K Johnson-McDaniel ◽  
Archisman Ghosh ◽  
Chandra Kant Mishra ◽  
Parameswaran Ajith ◽  
...  

2009 ◽  
Vol 5 (S261) ◽  
pp. 260-268
Author(s):  
M. J. Valtonen ◽  
S. Mikkola ◽  
D. Merritt ◽  
A. Gopakumar ◽  
H. J. Lehto ◽  
...  

AbstractSupermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6⋅1010M⊙. Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In OJ287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39°.1 ± 0°.1, by far the largest rate in any known binary, and the (1.83 ± 0.01)⋅1010M⊙primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the ‘no-hair’ parameter to be 1.0 ± 0.3 which supports the black hole no-hair theorem within the achievable precision.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Peter T. H. Pang ◽  
Juan Calderón Bustillo ◽  
Yifan Wang ◽  
Tjonnie G. F. Li

Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 357
Author(s):  
Norichika Sago ◽  
Soichiro Isoyama ◽  
Hiroyuki Nakano

Ringdown gravitational waves of compact object binaries observed by ground-based gravitational-wave detectors encapsulate rich information to understand remnant objects after the merger and to test general relativity in the strong field. In this work, we investigate the ringdown gravitational waves in detail to better understand their property, assuming that the remnant objects are black holes. For this purpose, we perform numerical simulations of post-merger phase of binary black holes by using the black hole perturbation scheme with the initial data given under the close-limit approximation, and we generate data of ringdown gravitational waves with smaller numerical errors than that associated with currently available numerical relativity simulations. Based on the analysis of the data, we propose an orthonormalization of the quasinormal mode functions describing the fundamental tone and overtones to model ringdown gravitational waves. Finally, through some demonstrations of the proposed model, we briefly discuss the prospects for ringdown gravitational-wave data analysis including the overtones of quasinormal modes.


2021 ◽  
Vol 103 (12) ◽  
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Stephen Privitera ◽  
Satyanarayan R. P. Mohapatra ◽  
Parameswaran Ajith ◽  
Kipp Cannon ◽  
Nickolas Fotopoulos ◽  
...  

2016 ◽  
Vol 116 (13) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
M. R. Abernathy ◽  
F. Acernese ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document