Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation

2010 ◽  
Vol 19 (10) ◽  
pp. 100203 ◽  
Author(s):  
Mo Jia-Qi ◽  
Chen Xian-Feng
Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 896-909 ◽  
Author(s):  
Dianchen Lu ◽  
Aly R. Seadawy ◽  
Mujahid Iqbal

AbstractIn this research work, for the first time we introduced and described the new method, which is modified extended auxiliary equation mapping method. We investigated the new exact traveling and families of solitary wave solutions of two well-known nonlinear evaluation equations, which are generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified forms of Camassa-Holm equations. We used a new technique and we successfully obtained the new families of solitary wave solutions. As a result, these new solutions are obtained in the form of elliptic functions, trigonometric functions, kink and antikink solitons, bright and dark solitons, periodic solitary wave and traveling wave solutions. These new solutions show the power and fruitfulness of this new method. We can solve other nonlinear partial differential equations with the use of this method.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850145 ◽  
Author(s):  
Abdullah ◽  
Aly R. Seadawy ◽  
Jun Wang

Propagation of three-dimensional nonlinear solitary waves in a magnetized electron–positron plasma is analyzed. Modified extended mapping method is further modified and applied to three-dimensional nonlinear modified Zakharov–Kuznetsov equation to find traveling solitary wave solutions. As a result, electrostatic field potential, electric field, magnetic field and quantum statistical pressure are obtained with the aid of Mathematica. The new exact solitary wave solutions are obtained in different forms such as periodic, kink and anti-kink, dark soliton, bright soliton, bright and dark solitary waves, etc. The results are expressed in the forms of trigonometric, hyperbolic, rational and exponential functions. The electrostatic field potential and electric and magnetic fields are shown graphically. The soliton stability of these solitary wave solutions is analyzed. These results demonstrate the efficiency and precision of the method that can be applied to many other mathematical physical problems.


2014 ◽  
Vol 532 ◽  
pp. 346-350
Author(s):  
Xiao Xin Zhu ◽  
Song Hua Ma ◽  
Qing Bao Ren

With the help of the symbolic computation system Maple and an improved mapping method and a variable separation method, a series of new exact solutions (including solitary wave solutions and periodic wave solutions) to the (2+1)-dimensional general Nizhnik-Novikov-Veselov (GNNV) system is derived. Based on the derived solitary wave solution, we obtain some chaotic patterns.


Sign in / Sign up

Export Citation Format

Share Document