scholarly journals Simulation of disruptions triggered by Vertical Displacement Events (VDE) in tokamak and leading edge effect in plasma energy deposition to material surfaces

2019 ◽  
Vol 1391 ◽  
pp. 012123
Author(s):  
Calin V. Atanasiu ◽  
Leonid E. Zakharov ◽  
Xujing Li
2020 ◽  
Vol T171 ◽  
pp. 014076 ◽  
Author(s):  
J Coburn ◽  
E Thoren ◽  
R A Pitts ◽  
H Anand ◽  
M Lehnen ◽  
...  

2021 ◽  
Author(s):  
Jonathan Coburn ◽  
Michael Lehnen ◽  
Richard A Pitts ◽  
Gregor Simic ◽  
Francisco Javier Artola ◽  
...  

Abstract An analysis workflow has been developed to assess energy deposition and material damage for ITER vertical displacement events (VDE) and major disruptions (MD). This paper describes the use of this workflow to assess the melt damage to be expected during unmitigated current quench (CQ) phases of VDEs and MDs at different points in the ITER Research Plan. The plasma scenarios are modelled using the DINA code with variations in plasma current Ip, disruption direction (upwards or downwards), Be impurity density nBe, and diffusion coefficient χ. Magnetic field line tracing using SMITER calculates time-dependent, 3D maps of surface power density q_⊥ on the Be-armored first wall panels (FWP) throughout the CQ. MEMOS-U determines the temperature response, macroscopic melt motion, and final surface topology of each FWP. Effects of Be vapor shielding are included. Scenarios at the baseline combination of Ip and toroidal field (15 MA/5.3 T) show the most extreme melt damage, with the assumed nBe having a strong impact on the disruption duration, peak q_⊥ and total energy deposition to the first wall. The worst-cases are upward 15 MA VDEs and MDs at lower values of nBe, with q_(⊥,max)=307 MW/m^2 and maximum erosion losses of ~2mm after timespans of ~400-500 ms. All scenarios at 5 MA avoided melt damage, and only one 7.5 MA scenario yields a notable erosion depth of 0.25 mm. These results imply that disruptions during 5 MA, and some 7.5 MA, operating scenarios will be acceptable during the Pre-Fusion Power Operation phases of ITER. Preliminary analysis shows that localized melt damage for the worst-case disruption should have a limited impact on subsequent stationary power handling capability.


2007 ◽  
Vol 48 ◽  
pp. 790 ◽  
Author(s):  
Feng Xu ◽  
John C. Patterson ◽  
Chengwang Lei
Keyword(s):  

Plasma ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 366-375
Author(s):  
Sergey Sadakov

All tokamaks are designed to withstand a certain number of energetic electromagnetic (EM) transients caused by uncontrolled terminations of plasma pulses, including symmetric and asymmetric plasma vertical displacement events: VDEs and AVDEs. These events generate significant pulsed EM loads in all conductive components and coils. Axially symmetric transient EM loads induced by VDEs without Halo current have been calculated well since the 1980s; however, Halo-related EM load components and lateral loads associated with AVDEs still cause discussions. The author worked on fast plasma and EM transients in tokamaks quite a while ago then deviated to other areas but has been keeping track of the topic since. He is aware of discussions of the modelling of Halo currents and of significant scatter present in current estimates for AVDE-induced lateral loads and contends that some points of engineering logic formulated earlier on this topic may help reduce these uncertainties. This article summarises a few points of the engineering understanding developed in informal discussions within the ITER EDA team with the purpose to preserve these points for all tokamak developments.


1996 ◽  
Vol 36 (5) ◽  
pp. 643-656 ◽  
Author(s):  
Y Nakamura ◽  
R Yoshino ◽  
Y Neyatani ◽  
T Tsunematsu ◽  
M Azumi ◽  
...  

2020 ◽  
Author(s):  
Rafal Ortwein ◽  
Jacek Blocki ◽  
Jakub Hromadka ◽  
David Sestak ◽  
Josef Havlicek ◽  
...  

1986 ◽  
Vol 10 (3P2A) ◽  
pp. 770-775
Author(s):  
M. C. Carroll ◽  
G. H. Miley

2005 ◽  
Vol 75-79 ◽  
pp. 589-593 ◽  
Author(s):  
R. Paccagnella ◽  
M. Cavinato ◽  
T. Bolzonella ◽  
S. Ortolani ◽  
G. Pautasso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document