temperature response
Recently Published Documents


TOTAL DOCUMENTS

1923
(FIVE YEARS 450)

H-INDEX

77
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Ulf Büntgen ◽  
Sylvie Hodgson Smith ◽  
Sebastian Wagner ◽  
Paul Krusic ◽  
Jan Esper ◽  
...  

AbstractThe largest explosive volcanic eruption of the Common Era in terms of estimated sulphur yield to the stratosphere was identified in glaciochemical records 40 years ago, and dates to the mid-thirteenth century. Despite eventual attribution to the Samalas (Rinjani) volcano in Indonesia, the eruption date remains uncertain, and the climate response only partially understood. Seeking a more global perspective on summer surface temperature and hydroclimate change following the eruption, we present an analysis of 249 tree-ring chronologies spanning the thirteenth century and representing all continents except Antarctica. Of the 170 predominantly temperature sensitive high-frequency chronologies, the earliest hints of boreal summer cooling are the growth depressions found at sites in the western US and Canada in 1257 CE. If this response is a result of Samalas, it would be consistent with an eruption window of circa May–July 1257 CE. More widespread summer cooling across the mid-latitudes of North America and Eurasia is pronounced in 1258, while records from Scandinavia and Siberia reveal peak cooling in 1259. In contrast to the marked post-Samalas temperature response at high-elevation sites in the Northern Hemisphere, no strong hydroclimatic anomalies emerge from the 79 precipitation-sensitive chronologies. Although our findings remain spatially biased towards the western US and central Europe, and growth-climate response patterns are not always dominated by a single meteorological factor, this study offers a global proxy framework for the evaluation of paleoclimate model simulations.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261822
Author(s):  
Hongjun Xie ◽  
Mingdong Zhu ◽  
Yaying Yu ◽  
Xiaoshan Zeng ◽  
Guohua Tang ◽  
...  

Rice (Oryza sativa L.) is one of the most important species for food production worldwide. Low temperature is a major abiotic factor that affects rice germination and reproduction. Here, the underlying regulatory mechanism in seedlings of a TGMS variety (33S) and a cold-sensitive variety (Nipponbare) was investigated by comparative transcriptome. There were 795 differentially expressed genes (DEGs) identified only in cold-treated 33S, suggesting that 33S had a unique cold-resistance system. Functional and enrichment analysis of these DEGs revealed that, in 33S, several metabolic pathways, such as photosynthesis, amino acid metabolism, secondary metabolite biosynthesis, were significantly repressed. Moreover, pathways related to growth and development, including starch and sucrose metabolism, and DNA biosynthesis and damage response/repair, were significantly enhanced. The expression of genes related to nutrient reserve activity were significantly up-regulated in 33S. Finally, three NAC and several ERF transcription factors were predicted to be important in this transcriptional reprogramming. This present work provides valuable information for future investigations of low-temperature response mechanisms and genetic improvement of cold-tolerant rice seedlings.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Author(s):  
Andrew Claypole ◽  
James Claypole ◽  
Neil Bezodis ◽  
Liam Kilduff ◽  
David Gethin ◽  
...  

The ability to maintain body temperature has been shown to bring about improvements in sporting performance. However, current solutions are limited with regards to flexibility, heating uniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated which is robust to bending, folding, tensile extensions of up to 20% and machine washing. This combination of ink and substrate enables the heated garments to safely flex without impeding the wearer. It is capable of producing uniform heating over a 15 × 4 cm area using a conductive ink based on a blend of Graphite Nanoplatelets and Carbon Black. This can be attributed to the low roughness of the conductive carbon coating, the uniform distribution and good interconnection of the carbon particles. The heaters have a low thermal inertia, producing a rapid temperature response at low voltages, reaching equilibrium temperatures within 120 s of being switched on. The heaters reached the 40 °C required for wearable heating applications within 20 s at 12 Volts. Screen printing was demonstrated to be an effective method of controlling the printed layer thickness with good interlayer adhesion and contact for multiple printed layers. This can be used to regulate their electrical properties and hence adjust the heater performance.


Author(s):  
Casey terHorst ◽  
Mary-Alice Coffroth

In many cases, understanding species level responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32 C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared was not a good predictor of temperature response, suggesting a lack of adaptation to temperature over hundreds of generations. We found increased photosynthetic rates and decreased respiration rates with increasing temperature, and differences in physiology among genotypes, but found no significant differences in the response of different genotypes to temperature. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.


Author(s):  
Raphael Lucas Jacinto Almeida ◽  
Newton Carlos Santos ◽  
Carlos Eduardo Padilha ◽  
Mércia Melo Almeida Mota ◽  
Virgínia Mirtes Alcântara Silva ◽  
...  

2022 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Jhonny de Sá Rodrigues ◽  
Paulo Teixeira Gonçalves ◽  
Luis Pina ◽  
Fernando Gomes de Almeida

As the use of composite materials increases, the search for suitable automated processes gains relevance for guaranteeing production quality by ensuring the uniformity of the process, minimizing the amount of scrap generated, and reducing the time and energy consumption. Limitations on production by traditional means such as hand lay-up, vacuum bagging, and in-autoclave methods tend not to be as efficient when the size and shape complexity of the part being produced increases, motivating the search for alternative processes such as automated tape laying (ATL). This work aims to describe the process of modelling and simulating a composite ATL with in situ consolidation by characterizing the machine elements and using the finite differences method in conjunction with energy balances in order to create a digital twin of the process for further control design. The modelling approach implemented is able to follow the process dynamics when changes are made to the heating element and to predict the composite material temperature response, making it suitable for use as a digital twin of a production process using an ATL machine.


2022 ◽  
Vol 12 ◽  
Author(s):  
Min Lyu ◽  
Mengke Sun ◽  
Josep Peñuelas ◽  
Jordi Sardans ◽  
Jun Sun ◽  
...  

Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (Topt), photosynthetic rate at Topt, temperature sensitivity (Q10), and the rate of respiration at a standard temperature of 25°C (R25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. Topt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dheeraj Ranaut ◽  
K. Mukherjee

AbstractExploration of low temperature phase transitions associated with quantum critical point is one of the most mystifying fields of research which is under intensive focus in recent times. In this work, through comprehensive experimental evidences, we report the possibility of achieving quantum criticality in the neighborhood of a magnetic field-tuned tricritical point separating paramagnetic, antiferromagnetic and metamagnetic phases in a magnetic insulator, DyVO4. Magnetic susceptibility and heat capacity indicate to the presence of a long-range second order antiferromagnetic transition at TN ~ 3.2 K. Field variation of Magnetic susceptibility and heat capacity, along with differential magnetic susceptibility and DC field dependent AC susceptibility gives evidence of the modification of the antiferromagnetic structure below the tricritical point; implying the presence of a field-induced first order metamagnetic transition which persists down to 1.8 K. Further, the magnetic field dependence of the thermodynamic quantity − dM/dT, which is related to magnetic Gruneisen parameter, approaches a minimum, followed by a crossover near 5 kOe to a maximum; along with a hyperbolic divergence in temperature response of dM/dT in the critical field regime. Temperature response of heat capacity at 5 kOe also shows a deviation from the conventional behavior. Entropic topography phase diagram allows tracking of the variation of the entropy, which indicates towards the emergence of the peak at quantum critical point into a V-shaped region at high temperatures. Our studies yield an inimitable phase diagram describing a tricritical point at which the second-order antiferromagnetic phase line terminates followed by a first order line of metamagnetic transition, as the temperature is lowered, leading to metamagnetic quantum critical end point.


2022 ◽  
Vol 92 (3) ◽  
pp. 443
Author(s):  
М.А. Демьяненко ◽  
В.В. Старцев

Analytical relations for temperature response of the bolometer to periodic radiation pulses are obtained. It is theoretically shown and experimentally confirmed by the example of infrared bolometers that when detecting short radiation pulses, in contrast to the case of constant radiation, increasing the thermal conductivity of the bolometer and, accordingly, decreasing its thermal relaxation time, it is possible to significantly increase the response rate of the receiver, practically without reducing its sensitivity. The possibility of effective registration of pulsed terahertz radiation by microbolometers with a resistively coupled, thermally non-isolated antenna is considered. It is shown that such bolometers, which have increased thermal conductivity and, accordingly, reduced sensitivity to continuous-wave radiation, can be highly effective when detecting pulsed radiation with a duration shorter than the thermal relaxation time of the bolometer. On their basis, uncooled matrix detectors of pulsed terahertz radiation, characterized by a minimum detectable energy of less than 110-12 J and a frame rate of up to 1000 Hz, can be developed.


Sign in / Sign up

Export Citation Format

Share Document