scholarly journals Investigation on neutronic properties of ZrC coated advanced TRISO fuel for high-temperature gas-cooled reactors

2020 ◽  
Vol 1436 ◽  
pp. 012036
Author(s):  
F Aziz ◽  
M Panitra ◽  
A K Rivai ◽  
M Silalahi ◽  
N Sabrina ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4638
Author(s):  
Leon Fuks ◽  
Irena Herdzik-Koniecko ◽  
Katarzyna Kiegiel ◽  
Grazyna Zakrzewska-Koltuniewicz

Since the beginning of the nuclear industry, graphite has been widely used as a moderator and reflector of neutrons in nuclear power reactors. Some reactors are relatively old and have already been shut down. As a result, a large amount of irradiated graphite has been generated. Although several thousand papers in the International Nuclear Information Service (INIS) database have discussed the management of radioactive waste containing graphite, knowledge of this problem is not common. The aim of the paper is to present the current status of the methods used in different countries to manage graphite-containing radioactive waste. Attention has been paid to the methods of handling spent TRISO fuel after its discharge from high-temperature gas-cooled reactors (HTGR) reactors.


Author(s):  
Yohei Saiki ◽  
Masaki Honda ◽  
Masashi Takahashi ◽  
Koichi Ohira ◽  
Koji Okamoto

In order to develop 3S-TRISO fuel for Pu-burner High Temperature Gas Reactor (HTGR), we conducted lab. scale experiments such as preparation test of simulated fuel kernel; CeO2-YSZ particle, and coating pre-test with simulated kernel. In the preparation test, based on the actual achievement of manufacturing fuel for High Temperature Engineering Test Reactor (HTTR)[1], we tried to fabricate some CeO2-YSZ particles through external gelation process. As a result, we successfully obtained the manufacturing parameters that can prepare good particles. In addition, we carried out some parametric coating test with fluidized-bed equipment and ZrO2 particle as simulated ZrC coated fuel kernel, and obtained the prospect of the possibility to coat the layer having desired thickness.


Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document