water saturated
Recently Published Documents


TOTAL DOCUMENTS

1948
(FIVE YEARS 465)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 16 (1) ◽  
pp. 103-125
Author(s):  
Julie Z. Miller ◽  
Riley Culberg ◽  
David G. Long ◽  
Christopher A. Shuman ◽  
Dustin M. Schroeder ◽  
...  

Abstract. Perennial firn aquifers are subsurface meltwater reservoirs consisting of a meters-thick water-saturated firn layer that can form on spatial scales as large as tens of kilometers. They have been observed within the percolation facies of glaciated regions experiencing intense seasonal surface melting and high snow accumulation. Widespread perennial firn aquifers have been identified within the Greenland Ice Sheet (GrIS) via field expeditions, airborne ice-penetrating radar surveys, and satellite microwave sensors. In contrast, ice slabs are nearly continuous ice layers that can also form on spatial scales as large as tens of kilometers as a result of surface and subsurface water-saturated snow and firn layers sequentially refreezing following multiple melting seasons. They have been observed within the percolation facies of glaciated regions experiencing intense seasonal surface melting but in areas where snow accumulation is at least 25 % lower as compared to perennial firn aquifer areas. Widespread ice slabs have recently been identified within the GrIS via field expeditions and airborne ice-penetrating radar surveys, specifically in areas where perennial firn aquifers typically do not form. However, ice slabs have yet to be identified from space. Together, these two ice sheet features represent distinct, but related, sub-facies within the broader percolation facies of the GrIS that can be defined primarily by differences in snow accumulation, which influences the englacial hydrology and thermal characteristics of firn layers at depth. Here, for the first time, we use enhanced-resolution vertically polarized L-band brightness temperature (TVB) imagery (2015–2019) generated using observations collected over the GrIS by NASA's Soil Moisture Active Passive (SMAP) satellite to map perennial firn aquifer and ice slab areas together as a continuous englacial hydrological system. We use an empirical algorithm previously developed to map the extent of Greenland's perennial firn aquifers via fitting exponentially decreasing temporal L-band signatures to a set of sigmoidal curves. This algorithm is recalibrated to also map the extent of ice slab areas using airborne ice-penetrating radar surveys collected by NASA's Operation IceBridge (OIB) campaigns (2010–2017). Our SMAP-derived maps show that between 2015 and 2019, perennial firn aquifer areas extended over 64 000 km2, and ice slab areas extended over 76 000 km2. Combined together, these sub-facies are the equivalent of 24 % of the percolation facies of the GrIS. As Greenland's climate continues to warm, seasonal surface melting will increase in extent, intensity, and duration. Quantifying the possible rapid expansion of these sub-facies using satellite L-band microwave radiometry has significant implications for understanding ice-sheet-wide variability in englacial hydrology that may drive meltwater-induced hydrofracturing and accelerated ice flow as well as high-elevation meltwater runoff that can impact the mass balance and stability of the GrIS.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 216
Author(s):  
Ke Man ◽  
Xiaoli Liu ◽  
Zhifei Song ◽  
Zongxu Liu ◽  
Ruilin Liu ◽  
...  

For Fangshan granite in Beijing, the static compression and dynamic compression tests have been carried out separately under natural air drying and water saturation. It was found that the dynamic compressive strength of water-saturated granite is higher than that of air-dried granite, which is contrary to the result that the strength of water-saturated rock is lower than that of air-dried granite under static load. Furthermore, under the medium strain rate condition, when the strain rate is 85 s−1, the dynamic strength of natural air-dried granite could be increased by nearly 0.5 times compared with its static state. The dynamic strength of water-saturated granite could be increased by nearly 1–2 times compared with its static strength, which shows that water-saturated granite has stronger strain rate sensitivity than natural air-dried granite. Meanwhile, under impact loading, from the perspective of water-bearing granite the Bernoulli effect of fluid, the adhesion effect of free water and the Stefan effect of fluid in water-saturated granite were revealed, and found to be the essential reasons affecting the dynamic strength of water-saturated granite. The dynamic strength in different water-bearing states in the range of medium strain rate could then be analyzed in depth, providing a certain reference value for the strength design of water-bearing rock engineering.


2022 ◽  
Vol 906 ◽  
pp. 39-45
Author(s):  
Tatiana Maltseva

One of the ways to increase the bearing capacity and stability of a water-saturated base by introducing a sand pile vertically reinforced along the contour with geosynthetic material (geogrid SSP 30 / 30-2.5) is experimentally substantiated. This constructive solution is used in low-rise construction. For the theoretical substantiation of the suggested method, it is proposed to model the interaction of a weak foundation and a reinforced sand pile on the basis of the linear theory of viscoelasticity. Calculation of vertical displacements of the pile and comparison with the results of in situ experiments is presented.


2022 ◽  
Vol 07 (01) ◽  
Author(s):  
Serpil Erden ◽  

In this study, the performances of the sand piles in Istanbul's Bağcılar and Zeytinburnu districts has been analyzed using Finite Element Method (FEM). Single and group (triple) piles with various length/diameter ratios (L/D) were placed in the water-saturated soft clay soil. Sand piles were modeled in various L/D ratios (10, 5.71, and 8.57). The distance between the piles was chosen as 2 meters and the group effect was also investigated. A uniformly distributed load of 162 kN/m2 is placed on the ground. In addition, the soil was modeled with the Soft-Soil soil model, the hardening soil model for the infill part, and the sand piles with the Mohr-Coulomb soil model. According to the results , the settlement of the soil decreases by 52.8% for a single pile with an L/D ratio of 8.57. However, the best L/D ratio for triple piles was found to be 5.71. In this case, the settlement decreases by 52.8% compared to the pileless situation. Finally it was concluded that the model with the L/D ratio of 8.57 reduced settlement in the best and the most efficient way.


2022 ◽  
Vol 305 ◽  
pp. 117902
Author(s):  
Qing-Cui Wan ◽  
Zhenyuan Yin ◽  
Qiang Gao ◽  
Hu Si ◽  
Bo Li ◽  
...  

2022 ◽  
Vol 2150 (1) ◽  
pp. 012005
Author(s):  
B P Kolesnikov ◽  
R R Arushanyan

Abstract The universal mathematical model of relative conductivities of percolation clusters and phase permeabilities of oil-water-saturated rocks is presented. It is obtained on the basis of percolation theory, porous body physics and statistics. The model takes into account the influence of change in pore space surface properties and the nature of fluid flow on the studied characteristics and may be applied for comprehensive analysis and modeling of technological processes of oil production.


Geochemistry ◽  
2022 ◽  
pp. 125863
Author(s):  
Sean G. Deen ◽  
M. Jim Hendry ◽  
S. Lee Barbour ◽  
Soumya Das ◽  
Joseph Essilfie-Dughan

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Zhou ◽  
Shengrui Su ◽  
Peng Li

Many geological engineering hazards are closely related to the dynamic mechanical behaviors of rock materials. However, the dynamic mechanical behaviors of phyllite are less studied. In this study, we have carried out a series of triaxial cyclic tests on dry and water-saturated phyllite by employing the MTS 815 servohydraulic testing system and AE testing equipment to reveal the mechanical behavior, energy release, and crack distribution characteristics of phyllite. Results show that phyllite is a water-sensitive rock. Water and cyclic loading substantially affect the compressive strength, crack damage stress, deformation parameters, dilatancy, energy release, and crack distribution characteristics of phyllite. Furthermore, based on the dissipated energy, a new damage variable for phyllite is established. The critical damage variable for phyllite is approximately 0.80; this variable can be used as an index to predict the failure of phyllite. The water saturation effect of phyllite is very obvious; that is, it results in the weakness of mechanical properties of phyllite and changes the AE energy release and crack distribution characteristics of phyllite. This research can provide guidance for engineering construction and disaster prevention and control.


Sign in / Sign up

Export Citation Format

Share Document