Nuclear Hydrogen Production Based on High Temperature Gas Cooled Reactor in China

2019 ◽  
Vol 21 (1) ◽  
pp. 20 ◽  
Author(s):  
Ping Zhang ◽  
Jingming Xu ◽  
Lei Shi ◽  
Zuoyi Zhang
Author(s):  
Shoji Takada ◽  
Kenji Abe ◽  
Yoshiyuki Inagaki

The high temperature isolation valve (HTIV) is a key component to assure the safety of a high temperature gas cooled reactor (HTGR) connected with a hydrogen production system, that is, protection of radioactive material release from the reactor to the hydrogen production system and combustible gas ingress to the reactor at the accident of fracture of an intermediate heat exchanger and the chemical reactor. The HTIV used in the helium condition over 900 °C, however, has not been made for practical use yet. The conceptual structure design of an angle type HTIV was carried out. A seat made of Hasteloy-XR is welded inside a valve box. Internal thermal insulation is employed around the seat and a liner because high temperature helium gas over 900 °C flows inside the valve. Inner diameter of the top of seat was set 445 mm based on fabrication experiences of valve makers. A draft overall structure was proposed based on the diameter of seat. The numerical analysis was carried out to estimate temperature distribution and stress of metallic components by using a three-dimensional finite element method code. Numerical results showed that the temperature of the seat was simply decreased from the top around 900 °C to the root, and the thermal stress locally increased at the root of the seat which was connected with the valve box. The stress was lowered below the allowable limit 120 MPa by decreasing thickness of the connecting part and increasing the temperature of valve box to around 350 °C. The stress also increased at the top of the seat. Creep analysis was also carried out to estimate a creep-fatigue damage based on the temperature history of the normal operation and the depressurization accident.


Author(s):  
M. G. McKellar ◽  
E. A. Harvego ◽  
A. M. Gandrik

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power for the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.


Author(s):  
Jin Iwatsuki ◽  
Atsuhiko Terada ◽  
Hiroyuki Noguchi ◽  
Yoshiyuki Imai ◽  
Masanori Ijichi ◽  
...  

At the present time, we are alarmed by depletion of fossil energy and effects on global environment such as acid rain and global warming, because our lives depend still heavily on fossil energy. So, it is universally recognized that hydrogen is one of the best energy media and its demand will be increased greatly in the near future. In Japan, the Basic Plan for Energy Supply and Demand based on the Basic Law on Energy Policy Making was decided upon by the Cabinet on 6 October, 2003. In the plan, efforts for hydrogen energy utilization were expressed as follows; hydrogen is a clean energy carrier without carbon dioxide (CO2) emission, and commercialization of hydrogen production system using nuclear, solar and biomass, not fossil fuels, is desired. However, it is necessary to develop suitable technology to produce hydrogen without CO2 emission from a view point of global environmental protection, since little hydrogen exists naturally. Hydrogen production from water using nuclear energy, especially the high-temperature gas-cooled reactor (HTGR), is one of the most attractive solutions for the environmental issue, because HTGR hydrogen production by water splitting methods such as a thermochemical iodine-sulfur (IS) process has a high possibility to produce hydrogen effectively and economically. The Japan Atomic Energy Agency (JAEA) has been conducting the HTTR (High-Temperature Engineering Test Reactor) project from the view to establishing technology base on HTGR and also on the IS process. In the IS process, raw material, water, is to be reacted with iodine (I2) and sulfur dioxide (SO2) to produce hydrogen iodide (HI) and sulfuric acid (H2SO4), the so-called Bunsen reaction, which are then decomposed endothermically to produce hydrogen (H2) and oxygen (O2), respectively. Iodine and sulfur dioxide produced in the decomposition reactions can be used again as the reactants in the Bunsen reaction. In JAEA, continuous hydrogen production was demonstrated with the hydrogen production rate of about 30 NL/hr for one week using a bench-scale test apparatus made of glass. Based on the test results and know-how obtained through the bench-scale tests, a pilot test plant that can produce hydrogen of about 30 Nm3/hr is being designed. The test plant will be fabricated with industrial materials such as glass coated steel, SiC ceramics etc, and operated under high pressure condition up to 2 MPa. The test plant will consist of a IS process plant and a helium gas (He) circulation facility (He loop). The He loop can simulate HTTR operation conditions, which consists of a 400 kW-electric heater for He hating, a He circulator and a steam generator working as a He cooler. In parallel to the design study, key components of the IS process such as the sulfuric acid (H2SO4) and the sulfur trioxide (SO3) decomposers working under-high temperature corrosive environments have been designed and test-fabricated to confirm their fabricability. Also, other R&D’s are under way such as corrosion, processing of HIx solutions. This paper describes present status of these activities.


Author(s):  
Zhiwei Zhou

Sustainable development of Chinese economy in 21st century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China’s sustainable energy strategy. This paper illustrates the current status of China’s energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China’s energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400–450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China’s energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China’s future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people.


Sign in / Sign up

Export Citation Format

Share Document