scholarly journals Hyers-Ulam stability of first order linear differential equation using Fourier transform method

2020 ◽  
Vol 1597 ◽  
pp. 012026
Author(s):  
A Mohanapriya ◽  
A Ganesh
2018 ◽  
Vol 16 (1) ◽  
pp. 83-94
Author(s):  
E.R. Attia ◽  
V. Benekas ◽  
H.A. El-Morshedy ◽  
I.P. Stavroulakis

AbstractConsider the first-order linear differential equation with several retarded arguments$$\begin{array}{} \displaystyle x^{\prime }(t)+\sum\limits_{k=1}^{n}p_{k}(t)x(\tau _{k}(t))=0,\;\;\;t\geq t_{0}, \end{array} $$where the functions pk, τk ∈ C([t0, ∞), ℝ+), τk(t) < t for t ≥ t0 and limt→∞τk(t) = ∞, for every k = 1, 2, …, n. Oscillation conditions which essentially improve known results in the literature are established. An example illustrating the results is given.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
A. Javadian ◽  
E. Sorouri ◽  
G. H. Kim ◽  
M. Eshaghi Gordji

We prove the generalized Hyers-Ulam stability of the 2nd-order linear differential equation of the form , with condition that there exists a nonzero in such that and is an open interval. As a consequence of our main theorem, we prove the generalized Hyers-Ulam stability of several important well-known differential equations.


Sign in / Sign up

Export Citation Format

Share Document