scholarly journals Solving Vertical Body Motion with Quadratic Resistance using Closed-form Solution for Ricatti Differential Equation of Constant Coefficients based on Discriminant Criteria

2021 ◽  
Vol 1805 (1) ◽  
pp. 012007
Author(s):  
A Y Rohedi
Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 331 ◽  
Author(s):  
Huda Bakodah ◽  
Abdelhalim Ebaid

The Ambartsumian equation, a linear differential equation involving a proportional delay term, is used in the theory of surface brightness in the Milky Way. In this paper, the Laplace-transform was first applied to this equation, and then the decomposition method was implemented to establish a closed-form solution. The present closed-form solution is reported for the first time for the Ambartsumian equation. Numerically, the calculations have demonstrated a rapid rate of convergence of the obtained approximate solutions, which are displayed in several graphs. It has also been shown that only a few terms of the new approximate solution were sufficient to achieve extremely accurate numerical results. Furthermore, comparisons of the present results with the existing methods in the literature were introduced.


1992 ◽  
Vol 22 (12) ◽  
pp. 1996-1999
Author(s):  
Rolfe A. Leary ◽  
Hien Phan ◽  
Kevin Nimerfro

A common method of modelling forest stand dynamics is to use permanent growth plot remeasurements to calibrate a whole-stand growth model expressed as an ordinary differential equation. To obtain an estimate of future conditions, either the differential equation is integrated numerically or, if analytic, the differential equation is solved in closed form. In the latter case, a future condition is obtained simply by evaluating the integral form for the age of interest, subject to appropriate initial conditions. An older method of modelling forest stand dynamics was to use a normal or near-normal yield table as a density standard and calibrate a relative density change equation from permanent plot remeasurements. An estimate of a future stand property could be obtained by iterating from a known initial relative density. In this paper we show that when the relative density change equation has a particular form, the historical method also has a closed form solution, given by a sequence of polynomials with coefficients from successive rows of Pascal's arithmetic triangle.


Author(s):  
K. M. Vestena ◽  
D. R. Dos Santos ◽  
E. M. Oilveira Jr. ◽  
N. L. Pavan ◽  
K. Khoshelham

Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.


Author(s):  
Moustafa El-Shahed

The objective of this paper is to solve the equation of motion of semilunar heart valve vibrations. The vibrations of the closed semilunar valves were modeled with a Caputo hactional derivative of order α. With the help of Laplace transformation, closed-form solution is obtained for the equation of motion in terms of Mittag-Leffler function. An alternative Method for Semi-differential equation, when α = 0.5, is examined using MATHEMATICA. The simplicity of these solutions makes them ideal for testing the accuracy of numerical methods. This solution can be of some interest for a better fit of experimental data.


Author(s):  
K. M. Vestena ◽  
D. R. Dos Santos ◽  
E. M. Oilveira Jr. ◽  
N. L. Pavan ◽  
K. Khoshelham

Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.


Sign in / Sign up

Export Citation Format

Share Document