normal ordering
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 49 (1) ◽  
pp. 015104
Author(s):  
G Adhikari ◽  
S Al Kharusi ◽  
E Angelico ◽  
G Anton ◽  
I J Arnquist ◽  
...  

Abstract The nEXO neutrinoless double beta (0νββ) decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in 136Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of 1028 years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector. The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of 1.35 × 1028 yr at 90% confidence level in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model.


2021 ◽  
pp. 1-8
Author(s):  
Ebisa Mosisa Kanea ◽  

In this paper, quantum entanglement of correlated two-mode light generated by a three-level laser coupled to a two-mode squeezed vacuum reservoir is thoroughly analyzed using different inseparability criteria, using the master equation, we obtain the stochastic dierential equation and the correlation properties of the noise forces associated with the normal ordering. Next, we study the photon entanglement by considering different inseparability criteria. In particular, the criteria applied are Duan-Giedke-Cirac-Zoller (DGCZ) criterion, logarithmic negativity, Hillery-Zubairy, and Cauchy-Schwartz inequality and we found that the presence of the squeezing parameter leads to an increase in the degree of entanglement. Moreover, the linear gain coecient significantly achieved the degree of entanglement for the cavity radiation


Author(s):  
Stjepan Meljanac ◽  
◽  
Rina Štrajn ◽  
◽  
◽  
...  

We consider a class of exponentials in the Weyl-Heisenberg algebra with exponents of type at most linear in coordinates and arbitrary functions of momenta. They are expressed in terms of normal ordering where coordinates stand to the left from momenta. Exponents appearing in normal ordered form satisfy differential equations with boundary conditions that could be solved perturbatively order by order. Two propositions are presented for the Weyl-Heisenberg algebra in 2 dimensions and their generalizations in higher dimensions. These results can be applied to arbitrary noncommutative spaces for construction of star products, coproducts of momenta and twist operators. They can also be related to the BCH formula.


2021 ◽  
pp. 2150184
Author(s):  
V. V. Vien ◽  
H. N. Long ◽  
D. P. Khoi

In this paper, we study a non-renormalizable [Formula: see text] extension of the Standard Model with [Formula: see text] and [Formula: see text] symmetries accommodating the most recent neutrino data within the type-I seesaw mechanism. The two squared mass differences and three mixing angles can get the best-fit values while the leptonic Dirac CP phase is in [Formula: see text] range of the best-fit values for both normal and inverted orderings. The sum of active neutrino mass and the effective neutrino masses are, respectively, predicted to be [Formula: see text], [Formula: see text] and [Formula: see text] for normal ordering while [Formula: see text], [Formula: see text] and [Formula: see text] for inverted ordering, which are well consistent with the current experimental constraints.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
T. Djärv ◽  
A. Ekström ◽  
C. Forssén ◽  
G. R. Jansen
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Nayana Gautam ◽  
R. Krishnan ◽  
Mrinal Kumar Das

We study the effect of sterile neutrino on some low-scale processes in the framework of the minimal extended seesaw (MES). MES is the extension of the seesaw mechanism with the addition of sterile neutrino of intermediate mass. The MES model in this work is based on Δ(96) × C2 × C3 flavor symmetry. The structures of mass matrices in the framework lead to TM1 mixing with μ–τ symmetry. The model predicts the maximal value of the Dirac CP phase. We carry out our analysis to study the new physics contributions from the sterile neutrino to different charged lepton flavor violation (cLFV) processes involving muon and tau leptons as well as neutrinoless double beta decay (0νββ). The model predicts normal ordering (NO) of neutrino masses, and we perform the numerical analysis considering normal ordering (NO) only. We find that a heavy sterile neutrino can lead to cLFV processes that are within the reach of current and planned experiments. The sterile neutrino present in our model is consistent with the current limits on the effective neutrino mass set by 0νββ experiments.


2021 ◽  
Vol 66 (7) ◽  
pp. 551
Author(s):  
T. Abebe ◽  
Ch. Gashu

The quantum properties of a nondegenerate three-level cascade laser coupled to a two-mode vacuum reservoir are throughly analyzed with the use of the pertinent master equation and stochastic differential equations associated with the normal ordering. Particularly, the enhancement of squeezing and the amplification of photon entanglement of the two-mode cavity light are investigated. It is found that the two cavity modes are strongly entangled, and the degree of entanglement is directly related to the two-mode squeezing. Moreover, the squeezing and entanglement of the cavity radiation enhance with the rate of atomic injection.


2021 ◽  
pp. 2150132
Author(s):  
V. V. Vien

We construct a non-renormalizable [Formula: see text] model based on [Formula: see text] symmetry, whereby, neutrino mass ordering and the tiny neutrino masses are explained at tree level via type I seesaw mechanism. The model can reproduce the recent observed neutrino oscillation data in which neutrino oscillation parameters including three mixing angles [Formula: see text], Dirac CP phase plus neutrino squared-mass splittings [Formula: see text] get the best-fit values for both Normal ordering (NO) and Inverted ordering (IO). The Majorana phases are predicted to be [Formula: see text] for NO, [Formula: see text] for IO and [Formula: see text] for both NH and IO. The sum of neutrino mass and the effective neutrino mass are, respectively, predicted to be [Formula: see text] for NO while [Formula: see text] for IO and [Formula: see text] for NO while [Formula: see text] for IO which are well compatible with the most recent experimental constraints.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
V. V. Vien

AbstractWe propose a non-renormalizable $$B-L$$ B - L model with $$S_{3}{\times Z_4\times Z_2}$$ S 3 × Z 4 × Z 2 symmetry which successfully accommodates the current active–sterile neutrino mixing in $$3+1$$ 3 + 1 scheme. The $$S_3$$ S 3 flavor symmetry is supplemented by $$Z_4\otimes Z_2$$ Z 4 ⊗ Z 2 symmetry to consolidate the Yukawa interaction of the model. The presence of $$S_3\otimes Z_4\otimes Z_2$$ S 3 ⊗ Z 4 ⊗ Z 2 flavour symmetry plays an important role in generating the desired structure of the neutrino mass matrix. The model can reproduce the recent observed active-neutrino neutrino oscillation data for normal ordering in which two sterile–active mixing angles $$\theta _{14, 24}$$ θ 14 , 24 get the best-fit values and the obtained values of $$\theta _{34}, \delta _{14}, \delta _{14}$$ θ 34 , δ 14 , δ 14 , the sum of neutrino mass and the effective neutrino masses are within their currently allowed ranges.


2021 ◽  
pp. 2000589
Author(s):  
Liyun Hu ◽  
Luping Zhang ◽  
Xiaoting Chen ◽  
Wei Ye ◽  
Qin Guo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document